Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnssre | GIF version |
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnssre | ⊢ ℕ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7871 | . 2 ⊢ 1 ∈ ℝ | |
2 | peano2re 8005 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
3 | 2 | rgen 2510 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
4 | peano5nni 8830 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
5 | 1, 3, 4 | mp2an 423 | 1 ⊢ ℕ ⊆ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 ∀wral 2435 ⊆ wss 3102 (class class class)co 5821 ℝcr 7725 1c1 7727 + caddc 7729 ℕcn 8827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7817 ax-resscn 7818 ax-1re 7820 ax-addrcl 7823 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-int 3808 df-inn 8828 |
This theorem is referenced by: nnsscn 8832 nnre 8834 nnred 8840 nn0ssre 9088 |
Copyright terms: Public domain | W3C validator |