ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre GIF version

Theorem nnssre 9070
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre ℕ ⊆ ℝ

Proof of Theorem nnssre
StepHypRef Expression
1 1re 8101 . 2 1 ∈ ℝ
2 peano2re 8238 . . 3 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
32rgen 2560 . 2 𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ
4 peano5nni 9069 . 2 ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ)
51, 3, 4mp2an 426 1 ℕ ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2177  wral 2485  wss 3170  (class class class)co 5962  cr 7954  1c1 7956   + caddc 7958  cn 9066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4173  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3176  df-ss 3183  df-int 3895  df-inn 9067
This theorem is referenced by:  nnsscn  9071  nnre  9073  nnred  9079  nn0ssre  9329  nninfdclemp1  12906  nninfdclemf1  12908
  Copyright terms: Public domain W3C validator