ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre GIF version

Theorem nnssre 8857
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre ℕ ⊆ ℝ

Proof of Theorem nnssre
StepHypRef Expression
1 1re 7894 . 2 1 ∈ ℝ
2 peano2re 8030 . . 3 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
32rgen 2518 . 2 𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ
4 peano5nni 8856 . 2 ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ)
51, 3, 4mp2an 423 1 ℕ ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2136  wral 2443  wss 3115  (class class class)co 5841  cr 7748  1c1 7750   + caddc 7752  cn 8853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4099  ax-cnex 7840  ax-resscn 7841  ax-1re 7843  ax-addrcl 7846
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-v 2727  df-in 3121  df-ss 3128  df-int 3824  df-inn 8854
This theorem is referenced by:  nnsscn  8858  nnre  8860  nnred  8866  nn0ssre  9114  nninfdclemp1  12379  nninfdclemf1  12381
  Copyright terms: Public domain W3C validator