| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnssre | GIF version | ||
| Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnssre | ⊢ ℕ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8101 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | peano2re 8238 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
| 3 | 2 | rgen 2560 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
| 4 | peano5nni 9069 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
| 5 | 1, 3, 4 | mp2an 426 | 1 ⊢ ℕ ⊆ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 (class class class)co 5962 ℝcr 7954 1c1 7956 + caddc 7958 ℕcn 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4173 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3176 df-ss 3183 df-int 3895 df-inn 9067 |
| This theorem is referenced by: nnsscn 9071 nnre 9073 nnred 9079 nn0ssre 9329 nninfdclemp1 12906 nninfdclemf1 12908 |
| Copyright terms: Public domain | W3C validator |