ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre GIF version

Theorem nnssre 9039
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre ℕ ⊆ ℝ

Proof of Theorem nnssre
StepHypRef Expression
1 1re 8070 . 2 1 ∈ ℝ
2 peano2re 8207 . . 3 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
32rgen 2558 . 2 𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ
4 peano5nni 9038 . 2 ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ)
51, 3, 4mp2an 426 1 ℕ ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2175  wral 2483  wss 3165  (class class class)co 5943  cr 7923  1c1 7925   + caddc 7927  cn 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-int 3885  df-inn 9036
This theorem is referenced by:  nnsscn  9040  nnre  9042  nnred  9048  nn0ssre  9298  nninfdclemp1  12763  nninfdclemf1  12765
  Copyright terms: Public domain W3C validator