Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnssre | GIF version |
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnssre | ⊢ ℕ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7894 | . 2 ⊢ 1 ∈ ℝ | |
2 | peano2re 8030 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
3 | 2 | rgen 2518 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
4 | peano5nni 8856 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
5 | 1, 3, 4 | mp2an 423 | 1 ⊢ ℕ ⊆ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∀wral 2443 ⊆ wss 3115 (class class class)co 5841 ℝcr 7748 1c1 7750 + caddc 7752 ℕcn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-v 2727 df-in 3121 df-ss 3128 df-int 3824 df-inn 8854 |
This theorem is referenced by: nnsscn 8858 nnre 8860 nnred 8866 nn0ssre 9114 nninfdclemp1 12379 nninfdclemf1 12381 |
Copyright terms: Public domain | W3C validator |