| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnssre | GIF version | ||
| Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| nnssre | ⊢ ℕ ⊆ ℝ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1re 8025 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | peano2re 8162 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
| 3 | 2 | rgen 2550 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ | 
| 4 | peano5nni 8993 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
| 5 | 1, 3, 4 | mp2an 426 | 1 ⊢ ℕ ⊆ ℝ | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 (class class class)co 5922 ℝcr 7878 1c1 7880 + caddc 7882 ℕcn 8990 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-inn 8991 | 
| This theorem is referenced by: nnsscn 8995 nnre 8997 nnred 9003 nn0ssre 9253 nninfdclemp1 12667 nninfdclemf1 12669 | 
| Copyright terms: Public domain | W3C validator |