| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnssre | GIF version | ||
| Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnssre | ⊢ ℕ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8070 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | peano2re 8207 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
| 3 | 2 | rgen 2558 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
| 4 | peano5nni 9038 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
| 5 | 1, 3, 4 | mp2an 426 | 1 ⊢ ℕ ⊆ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-int 3885 df-inn 9036 |
| This theorem is referenced by: nnsscn 9040 nnre 9042 nnred 9048 nn0ssre 9298 nninfdclemp1 12763 nninfdclemf1 12765 |
| Copyright terms: Public domain | W3C validator |