ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssre GIF version

Theorem nnssre 8994
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre ℕ ⊆ ℝ

Proof of Theorem nnssre
StepHypRef Expression
1 1re 8025 . 2 1 ∈ ℝ
2 peano2re 8162 . . 3 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
32rgen 2550 . 2 𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ
4 peano5nni 8993 . 2 ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ)
51, 3, 4mp2an 426 1 ℕ ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2167  wral 2475  wss 3157  (class class class)co 5922  cr 7878  1c1 7880   + caddc 7882  cn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-int 3875  df-inn 8991
This theorem is referenced by:  nnsscn  8995  nnre  8997  nnred  9003  nn0ssre  9253  nninfdclemp1  12667  nninfdclemf1  12669
  Copyright terms: Public domain W3C validator