ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemf1 Unicode version

Theorem nninfdclemf1 12396
Description: Lemma for nninfdc 12397. The function from nninfdclemf 12393 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
Assertion
Ref Expression
nninfdclemf1  |-  ( ph  ->  F : NN -1-1-> A
)
Distinct variable groups:    A, m, n   
x, A    y, A, z    m, F, n    x, F    y, F, z    i, J    y, J, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)

Proof of Theorem nninfdclemf1
Dummy variables  p  q  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . 3  |-  ( ph  ->  A  C_  NN )
2 nninfdclemf.dc . . 3  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
3 nninfdclemf.nb . . 3  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
4 nninfdclemf.j . . 3  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
5 nninfdclemf.f . . 3  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
61, 2, 3, 4, 5nninfdclemf 12393 . 2  |-  ( ph  ->  F : NN --> A )
7 fveq2 5494 . . . . 5  |-  ( u  =  v  ->  ( F `  u )  =  ( F `  v ) )
8 fveq2 5494 . . . . 5  |-  ( u  =  p  ->  ( F `  u )  =  ( F `  p ) )
9 fveq2 5494 . . . . 5  |-  ( u  =  q  ->  ( F `  u )  =  ( F `  q ) )
10 nnssre 8871 . . . . 5  |-  NN  C_  RR
111adantr 274 . . . . . . 7  |-  ( (
ph  /\  u  e.  NN )  ->  A  C_  NN )
126ffvelrnda 5629 . . . . . . 7  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  A )
1311, 12sseldd 3148 . . . . . 6  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  NN )
1413nnred 8880 . . . . 5  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  RR )
151ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A  C_  NN )
162ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A. x  e.  NN DECID  x  e.  A )
173ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A. m  e.  NN  E. n  e.  A  m  <  n
)
184ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  ( J  e.  A  /\  1  <  J ) )
19 simplrl 530 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  u  e.  NN )
20 simplrr 531 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  v  e.  NN )
21 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  u  <  v )
2215, 16, 17, 18, 5, 19, 20, 21nninfdclemlt 12395 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  ( F `  u )  <  ( F `  v )
)
2322ex 114 . . . . 5  |-  ( (
ph  /\  ( u  e.  NN  /\  v  e.  NN ) )  -> 
( u  <  v  ->  ( F `  u
)  <  ( F `  v ) ) )
247, 8, 9, 10, 14, 23eqord1 8391 . . . 4  |-  ( (
ph  /\  ( p  e.  NN  /\  q  e.  NN ) )  -> 
( p  =  q  <-> 
( F `  p
)  =  ( F `
 q ) ) )
2524biimprd 157 . . 3  |-  ( (
ph  /\  ( p  e.  NN  /\  q  e.  NN ) )  -> 
( ( F `  p )  =  ( F `  q )  ->  p  =  q ) )
2625ralrimivva 2552 . 2  |-  ( ph  ->  A. p  e.  NN  A. q  e.  NN  (
( F `  p
)  =  ( F `
 q )  ->  p  =  q )
)
27 dff13 5745 . 2  |-  ( F : NN -1-1-> A  <->  ( F : NN --> A  /\  A. p  e.  NN  A. q  e.  NN  ( ( F `
 p )  =  ( F `  q
)  ->  p  =  q ) ) )
286, 26, 27sylanbrc 415 1  |-  ( ph  ->  F : NN -1-1-> A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    i^i cin 3120    C_ wss 3121   class class class wbr 3987    |-> cmpt 4048   -->wf 5192   -1-1->wf1 5193   ` cfv 5196  (class class class)co 5851    e. cmpo 5853  infcinf 6957   RRcr 7762   1c1 7764    + caddc 7766    < clt 7943   NNcn 8867   ZZ>=cuz 9476    seqcseq 10390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-addcom 7863  ax-addass 7865  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-0id 7871  ax-rnegex 7872  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-sup 6958  df-inf 6959  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-inn 8868  df-n0 9125  df-z 9202  df-uz 9477  df-fz 9955  df-fzo 10088  df-seqfrec 10391
This theorem is referenced by:  nninfdc  12397
  Copyright terms: Public domain W3C validator