ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemf1 Unicode version

Theorem nninfdclemf1 12823
Description: Lemma for nninfdc 12824. The function from nninfdclemf 12820 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
Assertion
Ref Expression
nninfdclemf1  |-  ( ph  ->  F : NN -1-1-> A
)
Distinct variable groups:    A, m, n   
x, A    y, A, z    m, F, n    x, F    y, F, z    i, J    y, J, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)

Proof of Theorem nninfdclemf1
Dummy variables  p  q  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . 3  |-  ( ph  ->  A  C_  NN )
2 nninfdclemf.dc . . 3  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
3 nninfdclemf.nb . . 3  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
4 nninfdclemf.j . . 3  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
5 nninfdclemf.f . . 3  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
61, 2, 3, 4, 5nninfdclemf 12820 . 2  |-  ( ph  ->  F : NN --> A )
7 fveq2 5576 . . . . 5  |-  ( u  =  v  ->  ( F `  u )  =  ( F `  v ) )
8 fveq2 5576 . . . . 5  |-  ( u  =  p  ->  ( F `  u )  =  ( F `  p ) )
9 fveq2 5576 . . . . 5  |-  ( u  =  q  ->  ( F `  u )  =  ( F `  q ) )
10 nnssre 9040 . . . . 5  |-  NN  C_  RR
111adantr 276 . . . . . . 7  |-  ( (
ph  /\  u  e.  NN )  ->  A  C_  NN )
126ffvelcdmda 5715 . . . . . . 7  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  A )
1311, 12sseldd 3194 . . . . . 6  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  NN )
1413nnred 9049 . . . . 5  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  RR )
151ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A  C_  NN )
162ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A. x  e.  NN DECID  x  e.  A )
173ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A. m  e.  NN  E. n  e.  A  m  <  n
)
184ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  ( J  e.  A  /\  1  <  J ) )
19 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  u  e.  NN )
20 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  v  e.  NN )
21 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  u  <  v )
2215, 16, 17, 18, 5, 19, 20, 21nninfdclemlt 12822 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  ( F `  u )  <  ( F `  v )
)
2322ex 115 . . . . 5  |-  ( (
ph  /\  ( u  e.  NN  /\  v  e.  NN ) )  -> 
( u  <  v  ->  ( F `  u
)  <  ( F `  v ) ) )
247, 8, 9, 10, 14, 23eqord1 8556 . . . 4  |-  ( (
ph  /\  ( p  e.  NN  /\  q  e.  NN ) )  -> 
( p  =  q  <-> 
( F `  p
)  =  ( F `
 q ) ) )
2524biimprd 158 . . 3  |-  ( (
ph  /\  ( p  e.  NN  /\  q  e.  NN ) )  -> 
( ( F `  p )  =  ( F `  q )  ->  p  =  q ) )
2625ralrimivva 2588 . 2  |-  ( ph  ->  A. p  e.  NN  A. q  e.  NN  (
( F `  p
)  =  ( F `
 q )  ->  p  =  q )
)
27 dff13 5837 . 2  |-  ( F : NN -1-1-> A  <->  ( F : NN --> A  /\  A. p  e.  NN  A. q  e.  NN  ( ( F `
 p )  =  ( F `  q
)  ->  p  =  q ) ) )
286, 26, 27sylanbrc 417 1  |-  ( ph  ->  F : NN -1-1-> A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    i^i cin 3165    C_ wss 3166   class class class wbr 4044    |-> cmpt 4105   -->wf 5267   -1-1->wf1 5268   ` cfv 5271  (class class class)co 5944    e. cmpo 5946  infcinf 7085   RRcr 7924   1c1 7926    + caddc 7928    < clt 8107   NNcn 9036   ZZ>=cuz 9648    seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-seqfrec 10593
This theorem is referenced by:  nninfdc  12824
  Copyright terms: Public domain W3C validator