ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemf1 Unicode version

Theorem nninfdclemf1 13023
Description: Lemma for nninfdc 13024. The function from nninfdclemf 13020 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
Assertion
Ref Expression
nninfdclemf1  |-  ( ph  ->  F : NN -1-1-> A
)
Distinct variable groups:    A, m, n   
x, A    y, A, z    m, F, n    x, F    y, F, z    i, J    y, J, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)

Proof of Theorem nninfdclemf1
Dummy variables  p  q  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . 3  |-  ( ph  ->  A  C_  NN )
2 nninfdclemf.dc . . 3  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
3 nninfdclemf.nb . . 3  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
4 nninfdclemf.j . . 3  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
5 nninfdclemf.f . . 3  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
61, 2, 3, 4, 5nninfdclemf 13020 . 2  |-  ( ph  ->  F : NN --> A )
7 fveq2 5627 . . . . 5  |-  ( u  =  v  ->  ( F `  u )  =  ( F `  v ) )
8 fveq2 5627 . . . . 5  |-  ( u  =  p  ->  ( F `  u )  =  ( F `  p ) )
9 fveq2 5627 . . . . 5  |-  ( u  =  q  ->  ( F `  u )  =  ( F `  q ) )
10 nnssre 9114 . . . . 5  |-  NN  C_  RR
111adantr 276 . . . . . . 7  |-  ( (
ph  /\  u  e.  NN )  ->  A  C_  NN )
126ffvelcdmda 5770 . . . . . . 7  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  A )
1311, 12sseldd 3225 . . . . . 6  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  NN )
1413nnred 9123 . . . . 5  |-  ( (
ph  /\  u  e.  NN )  ->  ( F `
 u )  e.  RR )
151ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A  C_  NN )
162ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A. x  e.  NN DECID  x  e.  A )
173ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  A. m  e.  NN  E. n  e.  A  m  <  n
)
184ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  ( J  e.  A  /\  1  <  J ) )
19 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  u  e.  NN )
20 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  v  e.  NN )
21 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  u  <  v )
2215, 16, 17, 18, 5, 19, 20, 21nninfdclemlt 13022 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  NN  /\  v  e.  NN )
)  /\  u  <  v )  ->  ( F `  u )  <  ( F `  v )
)
2322ex 115 . . . . 5  |-  ( (
ph  /\  ( u  e.  NN  /\  v  e.  NN ) )  -> 
( u  <  v  ->  ( F `  u
)  <  ( F `  v ) ) )
247, 8, 9, 10, 14, 23eqord1 8630 . . . 4  |-  ( (
ph  /\  ( p  e.  NN  /\  q  e.  NN ) )  -> 
( p  =  q  <-> 
( F `  p
)  =  ( F `
 q ) ) )
2524biimprd 158 . . 3  |-  ( (
ph  /\  ( p  e.  NN  /\  q  e.  NN ) )  -> 
( ( F `  p )  =  ( F `  q )  ->  p  =  q ) )
2625ralrimivva 2612 . 2  |-  ( ph  ->  A. p  e.  NN  A. q  e.  NN  (
( F `  p
)  =  ( F `
 q )  ->  p  =  q )
)
27 dff13 5892 . 2  |-  ( F : NN -1-1-> A  <->  ( F : NN --> A  /\  A. p  e.  NN  A. q  e.  NN  ( ( F `
 p )  =  ( F `  q
)  ->  p  =  q ) ) )
286, 26, 27sylanbrc 417 1  |-  ( ph  ->  F : NN -1-1-> A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   -1-1->wf1 5315   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  infcinf 7150   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181   NNcn 9110   ZZ>=cuz 9722    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-seqfrec 10670
This theorem is referenced by:  nninfdc  13024
  Copyright terms: Public domain W3C validator