| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velpw | Unicode version | ||
| Description: Setvar variable membership in a power class (common case). See elpw 3611. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. 2
| |
| 2 | 1 | elpw 3611 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 |
| This theorem is referenced by: ordpwsucss 4603 fabexg 5445 abexssex 6182 qsss 6653 mapval2 6737 pmsspw 6742 uniixp 6780 exmidpw 6969 exmidpweq 6970 pw1fin 6971 pw1dc0el 6972 fival 7036 npsspw 7538 restsspw 12920 subsubrng2 13771 subsubrg2 13802 lssintclm 13940 istopon 14249 isbasis2g 14281 tgval2 14287 unitg 14298 distop 14321 cldss2 14342 ntreq0 14368 discld 14372 neisspw 14384 restdis 14420 cnntr 14461 |
| Copyright terms: Public domain | W3C validator |