ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3633
Description: Setvar variable membership in a power class (common case). See elpw 3632. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2779 . 2  |-  x  e. 
_V
21elpw 3632 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2178    C_ wss 3174   ~Pcpw 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628
This theorem is referenced by:  ordpwsucss  4633  fabexg  5485  abexssex  6233  qsss  6704  mapval2  6788  pmsspw  6793  uniixp  6831  exmidpw  7031  exmidpweq  7032  pw1fin  7033  pw1dc0el  7034  fival  7098  npsspw  7619  restsspw  13196  subsubrng2  14092  subsubrg2  14123  lssintclm  14261  istopon  14600  isbasis2g  14632  tgval2  14638  unitg  14649  distop  14672  cldss2  14693  ntreq0  14719  discld  14723  neisspw  14735  restdis  14771  cnntr  14812
  Copyright terms: Public domain W3C validator