ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3656
Description: Setvar variable membership in a power class (common case). See elpw 3655. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2802 . 2  |-  x  e. 
_V
21elpw 3655 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2200    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  ordpwsucss  4659  fabexg  5513  abexssex  6270  qsss  6741  mapval2  6825  pmsspw  6830  uniixp  6868  exmidpw  7070  exmidpweq  7071  pw1fin  7072  pw1dc0el  7073  fival  7137  npsspw  7658  restsspw  13282  subsubrng2  14179  subsubrg2  14210  lssintclm  14348  istopon  14687  isbasis2g  14719  tgval2  14725  unitg  14736  distop  14759  cldss2  14780  ntreq0  14806  discld  14810  neisspw  14822  restdis  14858  cnntr  14899
  Copyright terms: Public domain W3C validator