| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velpw | Unicode version | ||
| Description: Setvar variable membership in a power class (common case). See elpw 3655. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. 2
| |
| 2 | 1 | elpw 3655 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: ordpwsucss 4659 fabexg 5513 abexssex 6270 qsss 6741 mapval2 6825 pmsspw 6830 uniixp 6868 exmidpw 7070 exmidpweq 7071 pw1fin 7072 pw1dc0el 7073 fival 7137 npsspw 7658 restsspw 13282 subsubrng2 14179 subsubrg2 14210 lssintclm 14348 istopon 14687 isbasis2g 14719 tgval2 14725 unitg 14736 distop 14759 cldss2 14780 ntreq0 14806 discld 14810 neisspw 14822 restdis 14858 cnntr 14899 |
| Copyright terms: Public domain | W3C validator |