ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3623
Description: Setvar variable membership in a power class (common case). See elpw 3622. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2775 . 2  |-  x  e. 
_V
21elpw 3622 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176    C_ wss 3166   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  ordpwsucss  4615  fabexg  5463  abexssex  6210  qsss  6681  mapval2  6765  pmsspw  6770  uniixp  6808  exmidpw  7005  exmidpweq  7006  pw1fin  7007  pw1dc0el  7008  fival  7072  npsspw  7584  restsspw  13081  subsubrng2  13977  subsubrg2  14008  lssintclm  14146  istopon  14485  isbasis2g  14517  tgval2  14523  unitg  14534  distop  14557  cldss2  14578  ntreq0  14604  discld  14608  neisspw  14620  restdis  14656  cnntr  14697
  Copyright terms: Public domain W3C validator