ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3583
Description: Setvar variable membership in a power class (common case). See elpw 3582. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2741 . 2  |-  x  e. 
_V
21elpw 3582 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2148    C_ wss 3130   ~Pcpw 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143  df-pw 3578
This theorem is referenced by:  ordpwsucss  4567  fabexg  5404  abexssex  6126  qsss  6594  mapval2  6678  pmsspw  6683  uniixp  6721  exmidpw  6908  exmidpweq  6909  pw1fin  6910  pw1dc0el  6911  fival  6969  npsspw  7470  restsspw  12698  subsubrg2  13367  istopon  13516  isbasis2g  13548  tgval2  13554  unitg  13565  distop  13588  cldss2  13609  ntreq0  13635  discld  13639  neisspw  13651  restdis  13687  cnntr  13728
  Copyright terms: Public domain W3C validator