ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3612
Description: Setvar variable membership in a power class (common case). See elpw 3611. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2766 . 2  |-  x  e. 
_V
21elpw 3611 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2167    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  ordpwsucss  4603  fabexg  5445  abexssex  6182  qsss  6653  mapval2  6737  pmsspw  6742  uniixp  6780  exmidpw  6969  exmidpweq  6970  pw1fin  6971  pw1dc0el  6972  fival  7036  npsspw  7538  restsspw  12920  subsubrng2  13771  subsubrg2  13802  lssintclm  13940  istopon  14249  isbasis2g  14281  tgval2  14287  unitg  14298  distop  14321  cldss2  14342  ntreq0  14368  discld  14372  neisspw  14384  restdis  14420  cnntr  14461
  Copyright terms: Public domain W3C validator