![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > velpw | Unicode version |
Description: Setvar variable membership in a power class (common case). See elpw 3583. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
velpw |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elpw 3583 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-ss 3144 df-pw 3579 |
This theorem is referenced by: ordpwsucss 4568 fabexg 5405 abexssex 6129 qsss 6597 mapval2 6681 pmsspw 6686 uniixp 6724 exmidpw 6911 exmidpweq 6912 pw1fin 6913 pw1dc0el 6914 fival 6972 npsspw 7473 restsspw 12704 subsubrg2 13373 lssintclm 13477 istopon 13653 isbasis2g 13685 tgval2 13691 unitg 13702 distop 13725 cldss2 13746 ntreq0 13772 discld 13776 neisspw 13788 restdis 13824 cnntr 13865 |
Copyright terms: Public domain | W3C validator |