ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3613
Description: Setvar variable membership in a power class (common case). See elpw 3612. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2766 . 2  |-  x  e. 
_V
21elpw 3612 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2167    C_ wss 3157   ~Pcpw 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608
This theorem is referenced by:  ordpwsucss  4604  fabexg  5448  abexssex  6191  qsss  6662  mapval2  6746  pmsspw  6751  uniixp  6789  exmidpw  6978  exmidpweq  6979  pw1fin  6980  pw1dc0el  6981  fival  7045  npsspw  7555  restsspw  12951  subsubrng2  13847  subsubrg2  13878  lssintclm  14016  istopon  14333  isbasis2g  14365  tgval2  14371  unitg  14382  distop  14405  cldss2  14426  ntreq0  14452  discld  14456  neisspw  14468  restdis  14504  cnntr  14545
  Copyright terms: Public domain W3C validator