| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velpw | Unicode version | ||
| Description: Setvar variable membership in a power class (common case). See elpw 3622. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. 2
| |
| 2 | 1 | elpw 3622 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 |
| This theorem is referenced by: ordpwsucss 4616 fabexg 5465 abexssex 6212 qsss 6683 mapval2 6767 pmsspw 6772 uniixp 6810 exmidpw 7007 exmidpweq 7008 pw1fin 7009 pw1dc0el 7010 fival 7074 npsspw 7586 restsspw 13114 subsubrng2 14010 subsubrg2 14041 lssintclm 14179 istopon 14518 isbasis2g 14550 tgval2 14556 unitg 14567 distop 14590 cldss2 14611 ntreq0 14637 discld 14641 neisspw 14653 restdis 14689 cnntr 14730 |
| Copyright terms: Public domain | W3C validator |