| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velpw | Unicode version | ||
| Description: Setvar variable membership in a power class (common case). See elpw 3632. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. 2
| |
| 2 | 1 | elpw 3632 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 |
| This theorem is referenced by: ordpwsucss 4633 fabexg 5485 abexssex 6233 qsss 6704 mapval2 6788 pmsspw 6793 uniixp 6831 exmidpw 7031 exmidpweq 7032 pw1fin 7033 pw1dc0el 7034 fival 7098 npsspw 7619 restsspw 13196 subsubrng2 14092 subsubrg2 14123 lssintclm 14261 istopon 14600 isbasis2g 14632 tgval2 14638 unitg 14649 distop 14672 cldss2 14693 ntreq0 14719 discld 14723 neisspw 14735 restdis 14771 cnntr 14812 |
| Copyright terms: Public domain | W3C validator |