ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3609
Description: Setvar variable membership in a power class (common case). See elpw 3608. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2763 . 2  |-  x  e. 
_V
21elpw 3608 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164    C_ wss 3154   ~Pcpw 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604
This theorem is referenced by:  ordpwsucss  4600  fabexg  5442  abexssex  6179  qsss  6650  mapval2  6734  pmsspw  6739  uniixp  6777  exmidpw  6966  exmidpweq  6967  pw1fin  6968  pw1dc0el  6969  fival  7031  npsspw  7533  restsspw  12863  subsubrng2  13714  subsubrg2  13745  lssintclm  13883  istopon  14192  isbasis2g  14224  tgval2  14230  unitg  14241  distop  14264  cldss2  14285  ntreq0  14311  discld  14315  neisspw  14327  restdis  14363  cnntr  14404
  Copyright terms: Public domain W3C validator