ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3584
Description: Setvar variable membership in a power class (common case). See elpw 3583. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2742 . 2  |-  x  e. 
_V
21elpw 3583 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2148    C_ wss 3131   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  ordpwsucss  4568  fabexg  5405  abexssex  6129  qsss  6597  mapval2  6681  pmsspw  6686  uniixp  6724  exmidpw  6911  exmidpweq  6912  pw1fin  6913  pw1dc0el  6914  fival  6972  npsspw  7473  restsspw  12704  subsubrg2  13373  lssintclm  13477  istopon  13653  isbasis2g  13685  tgval2  13691  unitg  13702  distop  13725  cldss2  13746  ntreq0  13772  discld  13776  neisspw  13788  restdis  13824  cnntr  13865
  Copyright terms: Public domain W3C validator