| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velpw | Unicode version | ||
| Description: Setvar variable membership in a power class (common case). See elpw 3612. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. 2
| |
| 2 | 1 | elpw 3612 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 |
| This theorem is referenced by: ordpwsucss 4604 fabexg 5448 abexssex 6191 qsss 6662 mapval2 6746 pmsspw 6751 uniixp 6789 exmidpw 6978 exmidpweq 6979 pw1fin 6980 pw1dc0el 6981 fival 7045 npsspw 7555 restsspw 12951 subsubrng2 13847 subsubrg2 13878 lssintclm 14016 istopon 14333 isbasis2g 14365 tgval2 14371 unitg 14382 distop 14405 cldss2 14426 ntreq0 14452 discld 14456 neisspw 14468 restdis 14504 cnntr 14545 |
| Copyright terms: Public domain | W3C validator |