| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velpw | Unicode version | ||
| Description: Setvar variable membership in a power class (common case). See elpw 3622. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| velpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. 2
| |
| 2 | 1 | elpw 3622 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 |
| This theorem is referenced by: ordpwsucss 4615 fabexg 5463 abexssex 6210 qsss 6681 mapval2 6765 pmsspw 6770 uniixp 6808 exmidpw 7005 exmidpweq 7006 pw1fin 7007 pw1dc0el 7008 fival 7072 npsspw 7584 restsspw 13081 subsubrng2 13977 subsubrg2 14008 lssintclm 14146 istopon 14485 isbasis2g 14517 tgval2 14523 unitg 14534 distop 14557 cldss2 14578 ntreq0 14604 discld 14608 neisspw 14620 restdis 14656 cnntr 14697 |
| Copyright terms: Public domain | W3C validator |