ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  velpw Unicode version

Theorem velpw 3623
Description: Setvar variable membership in a power class (common case). See elpw 3622. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
velpw  |-  ( x  e.  ~P A  <->  x  C_  A
)
Distinct variable group:    x, A

Proof of Theorem velpw
StepHypRef Expression
1 vex 2775 . 2  |-  x  e. 
_V
21elpw 3622 1  |-  ( x  e.  ~P A  <->  x  C_  A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176    C_ wss 3166   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  ordpwsucss  4616  fabexg  5465  abexssex  6212  qsss  6683  mapval2  6767  pmsspw  6772  uniixp  6810  exmidpw  7007  exmidpweq  7008  pw1fin  7009  pw1dc0el  7010  fival  7074  npsspw  7586  restsspw  13114  subsubrng2  14010  subsubrg2  14041  lssintclm  14179  istopon  14518  isbasis2g  14550  tgval2  14556  unitg  14567  distop  14590  cldss2  14611  ntreq0  14637  discld  14641  neisspw  14653  restdis  14689  cnntr  14730
  Copyright terms: Public domain W3C validator