ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladd Unicode version

Theorem cauappcvgprlemladd 7813
Description: Lemma for cauappcvgpr 7817. This takes  L and offsets it by the positive fraction  S. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
cauappcvgprlemladd  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, u, p, q    S, l, q, u, p
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemladd
StepHypRef Expression
1 cauappcvgpr.f . . . 4  |-  ( ph  ->  F : Q. --> Q. )
2 cauappcvgpr.app . . . 4  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
3 cauappcvgpr.bnd . . . 4  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 cauappcvgpr.lim . . . 4  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
5 cauappcvgprlemladd.s . . . 4  |-  ( ph  ->  S  e.  Q. )
61, 2, 3, 4, 5cauappcvgprlemladdfl 7810 . . 3  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
71, 2, 3, 4, 5cauappcvgprlemladdrl 7812 . . 3  |-  ( ph  ->  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) 
C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
86, 7eqssd 3221 . 2  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
91, 2, 3, 4, 5cauappcvgprlemladdfu 7809 . . 3  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
101, 2, 3, 4, 5cauappcvgprlemladdru 7811 . . 3  |-  ( ph  ->  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) 
C_  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
119, 10eqssd 3221 . 2  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
121, 2, 3, 4cauappcvgprlemcl 7808 . . . 4  |-  ( ph  ->  L  e.  P. )
13 nqprlu 7702 . . . . 5  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
145, 13syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
15 addclpr 7692 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  e.  P. )
1612, 14, 15syl2anc 411 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )
17 npsspw 7626 . . . . . . 7  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
1817sseli 3200 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. ) )
19 1st2nd2 6291 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >. )
2018, 19syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >. )
21 ssrab2 3289 . . . . . . . 8  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  C_  Q.
22 nqex 7518 . . . . . . . . 9  |-  Q.  e.  _V
2322elpw2 4220 . . . . . . . 8  |-  ( { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  e.  ~P Q.  <->  { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  C_  Q. )
2421, 23mpbir 146 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  e.  ~P Q.
25 ssrab2 3289 . . . . . . . 8  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  C_  Q.
2622elpw2 4220 . . . . . . . 8  |-  ( { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u }  e.  ~P Q.  <->  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u }  C_  Q. )
2725, 26mpbir 146 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  ~P Q.
28 opelxpi 4728 . . . . . . 7  |-  ( ( { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  e.  ~P Q.  /\  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  ~P Q. )  ->  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. ) )
2924, 27, 28mp2an 426 . . . . . 6  |-  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )
30 1st2nd2 6291 . . . . . 6  |-  ( <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )  ->  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  = 
<. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. )
3129, 30mp1i 10 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  = 
<. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. )
3220, 31eqeq12d 2224 . . . 4  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. 
<-> 
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >.  =  <. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. ) )
33 xp1st 6281 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( 1st `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  e. 
~P Q. )
3418, 33syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  e.  ~P Q. )
35 xp2nd 6282 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  e. 
~P Q. )
3618, 35syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  e.  ~P Q. )
37 opthg 4303 . . . . 5  |-  ( ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  e.  ~P Q.  /\  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  e.  ~P Q. )  ->  ( <. ( 1st `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) >.  =  <. ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
3834, 36, 37syl2anc 411 . . . 4  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >.  =  <. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
3932, 38bitrd 188 . . 3  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
4016, 39syl 14 . 2  |-  ( ph  ->  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  <->  (
( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
418, 11, 40mpbir2and 949 1  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   {cab 2195   A.wral 2488   E.wrex 2489   {crab 2492    C_ wss 3177   ~Pcpw 3629   <.cop 3649   class class class wbr 4062    X. cxp 4694   -->wf 5290   ` cfv 5294  (class class class)co 5974   1stc1st 6254   2ndc2nd 6255   Q.cnq 7435    +Q cplq 7437    <Q cltq 7440   P.cnp 7446    +P. cpp 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-iplp 7623  df-iltp 7625
This theorem is referenced by:  cauappcvgprlem1  7814
  Copyright terms: Public domain W3C validator