ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladd Unicode version

Theorem cauappcvgprlemladd 7784
Description: Lemma for cauappcvgpr 7788. This takes  L and offsets it by the positive fraction  S. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
cauappcvgprlemladd  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, u, p, q    S, l, q, u, p
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemladd
StepHypRef Expression
1 cauappcvgpr.f . . . 4  |-  ( ph  ->  F : Q. --> Q. )
2 cauappcvgpr.app . . . 4  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
3 cauappcvgpr.bnd . . . 4  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 cauappcvgpr.lim . . . 4  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
5 cauappcvgprlemladd.s . . . 4  |-  ( ph  ->  S  e.  Q. )
61, 2, 3, 4, 5cauappcvgprlemladdfl 7781 . . 3  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
71, 2, 3, 4, 5cauappcvgprlemladdrl 7783 . . 3  |-  ( ph  ->  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) 
C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
86, 7eqssd 3212 . 2  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
91, 2, 3, 4, 5cauappcvgprlemladdfu 7780 . . 3  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
101, 2, 3, 4, 5cauappcvgprlemladdru 7782 . . 3  |-  ( ph  ->  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) 
C_  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
119, 10eqssd 3212 . 2  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
121, 2, 3, 4cauappcvgprlemcl 7779 . . . 4  |-  ( ph  ->  L  e.  P. )
13 nqprlu 7673 . . . . 5  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
145, 13syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
15 addclpr 7663 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  e.  P. )
1612, 14, 15syl2anc 411 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )
17 npsspw 7597 . . . . . . 7  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
1817sseli 3191 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. ) )
19 1st2nd2 6271 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >. )
2018, 19syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >. )
21 ssrab2 3280 . . . . . . . 8  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  C_  Q.
22 nqex 7489 . . . . . . . . 9  |-  Q.  e.  _V
2322elpw2 4206 . . . . . . . 8  |-  ( { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  e.  ~P Q.  <->  { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  C_  Q. )
2421, 23mpbir 146 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  e.  ~P Q.
25 ssrab2 3280 . . . . . . . 8  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  C_  Q.
2622elpw2 4206 . . . . . . . 8  |-  ( { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u }  e.  ~P Q.  <->  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u }  C_  Q. )
2725, 26mpbir 146 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  ~P Q.
28 opelxpi 4712 . . . . . . 7  |-  ( ( { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  e.  ~P Q.  /\  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  ~P Q. )  ->  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. ) )
2924, 27, 28mp2an 426 . . . . . 6  |-  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )
30 1st2nd2 6271 . . . . . 6  |-  ( <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )  ->  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  = 
<. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. )
3129, 30mp1i 10 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  = 
<. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. )
3220, 31eqeq12d 2221 . . . 4  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. 
<-> 
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >.  =  <. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. ) )
33 xp1st 6261 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( 1st `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  e. 
~P Q. )
3418, 33syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  e.  ~P Q. )
35 xp2nd 6262 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  e. 
~P Q. )
3618, 35syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  e.  ~P Q. )
37 opthg 4287 . . . . 5  |-  ( ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  e.  ~P Q.  /\  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  e.  ~P Q. )  ->  ( <. ( 1st `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) >.  =  <. ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
3834, 36, 37syl2anc 411 . . . 4  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >.  =  <. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
3932, 38bitrd 188 . . 3  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
4016, 39syl 14 . 2  |-  ( ph  ->  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  <->  (
( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
418, 11, 40mpbir2and 947 1  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   {cab 2192   A.wral 2485   E.wrex 2486   {crab 2489    C_ wss 3168   ~Pcpw 3618   <.cop 3638   class class class wbr 4048    X. cxp 4678   -->wf 5273   ` cfv 5277  (class class class)co 5954   1stc1st 6234   2ndc2nd 6235   Q.cnq 7406    +Q cplq 7408    <Q cltq 7411   P.cnp 7417    +P. cpp 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-2o 6513  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-enq0 7550  df-nq0 7551  df-0nq0 7552  df-plq0 7553  df-mq0 7554  df-inp 7592  df-iplp 7594  df-iltp 7596
This theorem is referenced by:  cauappcvgprlem1  7785
  Copyright terms: Public domain W3C validator