ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladd Unicode version

Theorem cauappcvgprlemladd 7599
Description: Lemma for cauappcvgpr 7603. This takes  L and offsets it by the positive fraction  S. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
cauappcvgprlemladd  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, u, p, q    S, l, q, u, p
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemladd
StepHypRef Expression
1 cauappcvgpr.f . . . 4  |-  ( ph  ->  F : Q. --> Q. )
2 cauappcvgpr.app . . . 4  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
3 cauappcvgpr.bnd . . . 4  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 cauappcvgpr.lim . . . 4  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
5 cauappcvgprlemladd.s . . . 4  |-  ( ph  ->  S  e.  Q. )
61, 2, 3, 4, 5cauappcvgprlemladdfl 7596 . . 3  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
71, 2, 3, 4, 5cauappcvgprlemladdrl 7598 . . 3  |-  ( ph  ->  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) 
C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
86, 7eqssd 3159 . 2  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
91, 2, 3, 4, 5cauappcvgprlemladdfu 7595 . . 3  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
101, 2, 3, 4, 5cauappcvgprlemladdru 7597 . . 3  |-  ( ph  ->  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) 
C_  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
119, 10eqssd 3159 . 2  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
121, 2, 3, 4cauappcvgprlemcl 7594 . . . 4  |-  ( ph  ->  L  e.  P. )
13 nqprlu 7488 . . . . 5  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
145, 13syl 14 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
15 addclpr 7478 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  e.  P. )
1612, 14, 15syl2anc 409 . . 3  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P. )
17 npsspw 7412 . . . . . . 7  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
1817sseli 3138 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. ) )
19 1st2nd2 6143 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >. )
2018, 19syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >. )
21 ssrab2 3227 . . . . . . . 8  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  C_  Q.
22 nqex 7304 . . . . . . . . 9  |-  Q.  e.  _V
2322elpw2 4136 . . . . . . . 8  |-  ( { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  e.  ~P Q.  <->  { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  C_  Q. )
2421, 23mpbir 145 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  e.  ~P Q.
25 ssrab2 3227 . . . . . . . 8  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  C_  Q.
2622elpw2 4136 . . . . . . . 8  |-  ( { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u }  e.  ~P Q.  <->  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u }  C_  Q. )
2725, 26mpbir 145 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  ~P Q.
28 opelxpi 4636 . . . . . . 7  |-  ( ( { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }  e.  ~P Q.  /\  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  ~P Q. )  ->  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. ) )
2924, 27, 28mp2an 423 . . . . . 6  |-  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )
30 1st2nd2 6143 . . . . . 6  |-  ( <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )  ->  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  = 
<. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. )
3129, 30mp1i 10 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  = 
<. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. )
3220, 31eqeq12d 2180 . . . 4  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. 
<-> 
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >.  =  <. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. ) )
33 xp1st 6133 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( 1st `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  e. 
~P Q. )
3418, 33syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  e.  ~P Q. )
35 xp2nd 6134 . . . . . 6  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  ( ~P Q.  X.  ~P Q. )  ->  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  e. 
~P Q. )
3618, 35syl 14 . . . . 5  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  e.  ~P Q. )
37 opthg 4216 . . . . 5  |-  ( ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  e.  ~P Q.  /\  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  e.  ~P Q. )  ->  ( <. ( 1st `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) >.  =  <. ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
3834, 36, 37syl2anc 409 . . . 4  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( <. ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) >.  =  <. ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ,  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
>. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
3932, 38bitrd 187 . . 3  |-  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  e.  P.  ->  ( ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. 
<->  ( ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
4016, 39syl 14 . 2  |-  ( ph  ->  ( ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >.  <->  (
( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  =  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  /\  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >. ) )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) ) )
418, 11, 40mpbir2and 934 1  |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   ~Pcpw 3559   <.cop 3579   class class class wbr 3982    X. cxp 4602   -->wf 5184   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221    +Q cplq 7223    <Q cltq 7226   P.cnp 7232    +P. cpp 7234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  cauappcvgprlem1  7600
  Copyright terms: Public domain W3C validator