ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnp1st2nd Unicode version

Theorem elnp1st2nd 7543
Description: Membership in positive reals, using  1st and  2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
Assertion
Ref Expression
elnp1st2nd  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Distinct variable group:    r, q, A

Proof of Theorem elnp1st2nd
StepHypRef Expression
1 npsspw 7538 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3179 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 prop 7542 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
4 elinp 7541 . . . . . . 7  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  <->  ( ( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
53, 4sylib 122 . . . . . 6  |-  ( A  e.  P.  ->  (
( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
65simpld 112 . . . . 5  |-  ( A  e.  P.  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
76simprd 114 . . . 4  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )
82, 7jca 306 . . 3  |-  ( A  e.  P.  ->  ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) ) )
95simprd 114 . . 3  |-  ( A  e.  P.  ->  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )
108, 9jca 306 . 2  |-  ( A  e.  P.  ->  (
( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
11 1st2nd2 6233 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
1211ad2antrr 488 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
13 xp1st 6223 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
1413elpwid 3616 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  C_  Q. )
15 xp2nd 6224 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
1615elpwid 3616 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  C_  Q. )
1714, 16jca 306 . . . . . 6  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. ) )
1817anim1i 340 . . . . 5  |-  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
1918anim1i 340 . . . 4  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  ( (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
2019, 4sylibr 134 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. )
2112, 20eqeltrd 2273 . 2  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  e.  P. )
2210, 21impbii 126 1  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   ~Pcpw 3605   <.cop 3625   class class class wbr 4033    X. cxp 4661   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347    <Q cltq 7352   P.cnp 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-qs 6598  df-ni 7371  df-nqqs 7415  df-inp 7533
This theorem is referenced by:  addclpr  7604  mulclpr  7639  ltexprlempr  7675  recexprlempr  7699  cauappcvgprlemcl  7720  caucvgprlemcl  7743  caucvgprprlemcl  7771
  Copyright terms: Public domain W3C validator