ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnp1st2nd Unicode version

Theorem elnp1st2nd 7466
Description: Membership in positive reals, using  1st and  2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
Assertion
Ref Expression
elnp1st2nd  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Distinct variable group:    r, q, A

Proof of Theorem elnp1st2nd
StepHypRef Expression
1 npsspw 7461 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3151 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 prop 7465 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
4 elinp 7464 . . . . . . 7  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  <->  ( ( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
53, 4sylib 122 . . . . . 6  |-  ( A  e.  P.  ->  (
( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
65simpld 112 . . . . 5  |-  ( A  e.  P.  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
76simprd 114 . . . 4  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )
82, 7jca 306 . . 3  |-  ( A  e.  P.  ->  ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) ) )
95simprd 114 . . 3  |-  ( A  e.  P.  ->  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )
108, 9jca 306 . 2  |-  ( A  e.  P.  ->  (
( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
11 1st2nd2 6170 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
1211ad2antrr 488 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
13 xp1st 6160 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
1413elpwid 3585 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  C_  Q. )
15 xp2nd 6161 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
1615elpwid 3585 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  C_  Q. )
1714, 16jca 306 . . . . . 6  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. ) )
1817anim1i 340 . . . . 5  |-  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
1918anim1i 340 . . . 4  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  ( (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
2019, 4sylibr 134 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. )
2112, 20eqeltrd 2254 . 2  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  e.  P. )
2210, 21impbii 126 1  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   ~Pcpw 3574   <.cop 3594   class class class wbr 4000    X. cxp 4621   ` cfv 5212   1stc1st 6133   2ndc2nd 6134   Q.cnq 7270    <Q cltq 7275   P.cnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1st 6135  df-2nd 6136  df-qs 6535  df-ni 7294  df-nqqs 7338  df-inp 7456
This theorem is referenced by:  addclpr  7527  mulclpr  7562  ltexprlempr  7598  recexprlempr  7622  cauappcvgprlemcl  7643  caucvgprlemcl  7666  caucvgprprlemcl  7694
  Copyright terms: Public domain W3C validator