ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnp1st2nd Unicode version

Theorem elnp1st2nd 7284
Description: Membership in positive reals, using  1st and  2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
Assertion
Ref Expression
elnp1st2nd  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Distinct variable group:    r, q, A

Proof of Theorem elnp1st2nd
StepHypRef Expression
1 npsspw 7279 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3093 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 prop 7283 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
4 elinp 7282 . . . . . . 7  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  <->  ( ( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
53, 4sylib 121 . . . . . 6  |-  ( A  e.  P.  ->  (
( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
65simpld 111 . . . . 5  |-  ( A  e.  P.  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
76simprd 113 . . . 4  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )
82, 7jca 304 . . 3  |-  ( A  e.  P.  ->  ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) ) )
95simprd 113 . . 3  |-  ( A  e.  P.  ->  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )
108, 9jca 304 . 2  |-  ( A  e.  P.  ->  (
( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
11 1st2nd2 6073 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
1211ad2antrr 479 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
13 xp1st 6063 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
1413elpwid 3521 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  C_  Q. )
15 xp2nd 6064 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
1615elpwid 3521 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  C_  Q. )
1714, 16jca 304 . . . . . 6  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. ) )
1817anim1i 338 . . . . 5  |-  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
1918anim1i 338 . . . 4  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  ( (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
2019, 4sylibr 133 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. )
2112, 20eqeltrd 2216 . 2  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  e.  P. )
2210, 21impbii 125 1  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   ~Pcpw 3510   <.cop 3530   class class class wbr 3929    X. cxp 4537   ` cfv 5123   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088    <Q cltq 7093   P.cnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-qs 6435  df-ni 7112  df-nqqs 7156  df-inp 7274
This theorem is referenced by:  addclpr  7345  mulclpr  7380  ltexprlempr  7416  recexprlempr  7440  cauappcvgprlemcl  7461  caucvgprlemcl  7484  caucvgprprlemcl  7512
  Copyright terms: Public domain W3C validator