ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnp1st2nd Unicode version

Theorem elnp1st2nd 7624
Description: Membership in positive reals, using  1st and  2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
Assertion
Ref Expression
elnp1st2nd  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Distinct variable group:    r, q, A

Proof of Theorem elnp1st2nd
StepHypRef Expression
1 npsspw 7619 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3197 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 prop 7623 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
4 elinp 7622 . . . . . . 7  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  <->  ( ( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
53, 4sylib 122 . . . . . 6  |-  ( A  e.  P.  ->  (
( ( ( 1st `  A )  C_  Q.  /\  ( 2nd `  A
)  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
65simpld 112 . . . . 5  |-  ( A  e.  P.  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
76simprd 114 . . . 4  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )
82, 7jca 306 . . 3  |-  ( A  e.  P.  ->  ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) ) )
95simprd 114 . . 3  |-  ( A  e.  P.  ->  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )
108, 9jca 306 . 2  |-  ( A  e.  P.  ->  (
( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
11 1st2nd2 6284 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
1211ad2antrr 488 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
13 xp1st 6274 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
1413elpwid 3637 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  C_  Q. )
15 xp2nd 6275 . . . . . . . 8  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
1615elpwid 3637 . . . . . . 7  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  C_  Q. )
1714, 16jca 306 . . . . . 6  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. ) )
1817anim1i 340 . . . . 5  |-  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  ->  (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) ) )
1918anim1i 340 . . . 4  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  ( (
( ( 1st `  A
)  C_  Q.  /\  ( 2nd `  A )  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
2019, 4sylibr 134 . . 3  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. )
2112, 20eqeltrd 2284 . 2  |-  ( ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  A )  /\  E. r  e.  Q.  r  e.  ( 2nd `  A
) ) )  /\  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) )  ->  A  e.  P. )
2210, 21impbii 126 1  |-  ( A  e.  P.  <->  ( ( A  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  A )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  A ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  A
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  A ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  A
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  A ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  A
)  \/  r  e.  ( 2nd `  A
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   ~Pcpw 3626   <.cop 3646   class class class wbr 4059    X. cxp 4691   ` cfv 5290   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428    <Q cltq 7433   P.cnp 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-qs 6649  df-ni 7452  df-nqqs 7496  df-inp 7614
This theorem is referenced by:  addclpr  7685  mulclpr  7720  ltexprlempr  7756  recexprlempr  7780  cauappcvgprlemcl  7801  caucvgprlemcl  7824  caucvgprprlemcl  7852
  Copyright terms: Public domain W3C validator