ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqlu Unicode version

Theorem preqlu 7434
Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
preqlu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )

Proof of Theorem preqlu
StepHypRef Expression
1 npsspw 7433 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3143 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6154 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . . 3  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
51sseli 3143 . . . 4  |-  ( B  e.  P.  ->  B  e.  ( ~P Q.  X.  ~P Q. ) )
6 1st2nd2 6154 . . . 4  |-  ( B  e.  ( ~P Q.  X.  ~P Q. )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
75, 6syl 14 . . 3  |-  ( B  e.  P.  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
84, 7eqeqan12d 2186 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. ) )
9 xp1st 6144 . . . . 5  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
102, 9syl 14 . . . 4  |-  ( A  e.  P.  ->  ( 1st `  A )  e. 
~P Q. )
11 xp2nd 6145 . . . . 5  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
122, 11syl 14 . . . 4  |-  ( A  e.  P.  ->  ( 2nd `  A )  e. 
~P Q. )
13 opthg 4223 . . . 4  |-  ( ( ( 1st `  A
)  e.  ~P Q.  /\  ( 2nd `  A
)  e.  ~P Q. )  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
1410, 12, 13syl2anc 409 . . 3  |-  ( A  e.  P.  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
1514adantr 274 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
168, 15bitrd 187 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   ~Pcpw 3566   <.cop 3586    X. cxp 4609   ` cfv 5198   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242   P.cnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-1st 6119  df-2nd 6120  df-inp 7428
This theorem is referenced by:  genpassg  7488  addnqpr  7523  mulnqpr  7539  distrprg  7550  1idpr  7554  ltexpri  7575  addcanprg  7578  recexprlemex  7599  aptipr  7603
  Copyright terms: Public domain W3C validator