ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqlu Unicode version

Theorem preqlu 7304
Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
preqlu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )

Proof of Theorem preqlu
StepHypRef Expression
1 npsspw 7303 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3098 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6081 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . . 3  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
51sseli 3098 . . . 4  |-  ( B  e.  P.  ->  B  e.  ( ~P Q.  X.  ~P Q. ) )
6 1st2nd2 6081 . . . 4  |-  ( B  e.  ( ~P Q.  X.  ~P Q. )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
75, 6syl 14 . . 3  |-  ( B  e.  P.  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
84, 7eqeqan12d 2156 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. ) )
9 xp1st 6071 . . . . 5  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
102, 9syl 14 . . . 4  |-  ( A  e.  P.  ->  ( 1st `  A )  e. 
~P Q. )
11 xp2nd 6072 . . . . 5  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
122, 11syl 14 . . . 4  |-  ( A  e.  P.  ->  ( 2nd `  A )  e. 
~P Q. )
13 opthg 4168 . . . 4  |-  ( ( ( 1st `  A
)  e.  ~P Q.  /\  ( 2nd `  A
)  e.  ~P Q. )  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
1410, 12, 13syl2anc 409 . . 3  |-  ( A  e.  P.  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
1514adantr 274 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
168, 15bitrd 187 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   ~Pcpw 3515   <.cop 3535    X. cxp 4545   ` cfv 5131   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112   P.cnp 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fv 5139  df-1st 6046  df-2nd 6047  df-inp 7298
This theorem is referenced by:  genpassg  7358  addnqpr  7393  mulnqpr  7409  distrprg  7420  1idpr  7424  ltexpri  7445  addcanprg  7448  recexprlemex  7469  aptipr  7473
  Copyright terms: Public domain W3C validator