ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqlu Unicode version

Theorem preqlu 7413
Description: Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
preqlu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )

Proof of Theorem preqlu
StepHypRef Expression
1 npsspw 7412 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3138 . . . 4  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6143 . . . 4  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . . 3  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
51sseli 3138 . . . 4  |-  ( B  e.  P.  ->  B  e.  ( ~P Q.  X.  ~P Q. ) )
6 1st2nd2 6143 . . . 4  |-  ( B  e.  ( ~P Q.  X.  ~P Q. )  ->  B  =  <. ( 1st `  B ) ,  ( 2nd `  B )
>. )
75, 6syl 14 . . 3  |-  ( B  e.  P.  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
84, 7eqeqan12d 2181 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. ) )
9 xp1st 6133 . . . . 5  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 1st `  A
)  e.  ~P Q. )
102, 9syl 14 . . . 4  |-  ( A  e.  P.  ->  ( 1st `  A )  e. 
~P Q. )
11 xp2nd 6134 . . . . 5  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  -> 
( 2nd `  A
)  e.  ~P Q. )
122, 11syl 14 . . . 4  |-  ( A  e.  P.  ->  ( 2nd `  A )  e. 
~P Q. )
13 opthg 4216 . . . 4  |-  ( ( ( 1st `  A
)  e.  ~P Q.  /\  ( 2nd `  A
)  e.  ~P Q. )  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
1410, 12, 13syl2anc 409 . . 3  |-  ( A  e.  P.  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
1514adantr 274 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
168, 15bitrd 187 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  =  B  <-> 
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   ~Pcpw 3559   <.cop 3579    X. cxp 4602   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221   P.cnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-2nd 6109  df-inp 7407
This theorem is referenced by:  genpassg  7467  addnqpr  7502  mulnqpr  7518  distrprg  7529  1idpr  7533  ltexpri  7554  addcanprg  7557  recexprlemex  7578  aptipr  7582
  Copyright terms: Public domain W3C validator