ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop Unicode version

Theorem prop 7437
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7433 . . . 4  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3143 . . 3  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6154 . . 3  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . 2  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 eleq1 2233 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  P.  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. ) )
65biimpcd 158 . 2  |-  ( A  e.  P.  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. ) )
74, 6mpd 13 1  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   ~Pcpw 3566   <.cop 3586    X. cxp 4609   ` cfv 5198   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242   P.cnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-1st 6119  df-2nd 6120  df-inp 7428
This theorem is referenced by:  elnp1st2nd  7438  0npr  7445  genpdf  7470  genipv  7471  genpelvl  7474  genpelvu  7475  genpml  7479  genpmu  7480  genprndl  7483  genprndu  7484  genpdisj  7485  genpassl  7486  genpassu  7487  addnqprl  7491  addnqpru  7492  addlocprlemeqgt  7494  addlocprlemgt  7496  addlocprlem  7497  addlocpr  7498  nqprl  7513  nqpru  7514  addnqprlemfl  7521  addnqprlemfu  7522  mulnqprl  7530  mulnqpru  7531  mullocprlem  7532  mullocpr  7533  mulnqprlemfl  7537  mulnqprlemfu  7538  addcomprg  7540  mulcomprg  7542  distrlem1prl  7544  distrlem1pru  7545  distrlem4prl  7546  distrlem4pru  7547  ltprordil  7551  1idprl  7552  1idpru  7553  ltpopr  7557  ltsopr  7558  ltaddpr  7559  ltexprlemm  7562  ltexprlemopl  7563  ltexprlemlol  7564  ltexprlemopu  7565  ltexprlemupu  7566  ltexprlemdisj  7568  ltexprlemloc  7569  ltexprlemfl  7571  ltexprlemrl  7572  ltexprlemfu  7573  ltexprlemru  7574  addcanprleml  7576  addcanprlemu  7577  prplnqu  7582  recexprlemm  7586  recexprlemdisj  7592  recexprlemloc  7593  recexprlem1ssl  7595  recexprlem1ssu  7596  recexprlemss1l  7597  recexprlemss1u  7598  aptiprleml  7601  aptiprlemu  7602  archpr  7605  cauappcvgprlemladdru  7618  cauappcvgprlemladdrl  7619  archrecpr  7626  caucvgprlemladdrl  7640  caucvgprprlemml  7656  caucvgprprlemmu  7657  caucvgprprlemopl  7659  suplocexprlemml  7678  suplocexprlemrl  7679  suplocexprlemmu  7680  suplocexprlemdisj  7682  suplocexprlemloc  7683  suplocexprlemex  7684  suplocexprlemub  7685
  Copyright terms: Public domain W3C validator