ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop Unicode version

Theorem prop 7590
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7586 . . . 4  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3189 . . 3  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6263 . . 3  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . 2  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 eleq1 2268 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  P.  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. ) )
65biimpcd 159 . 2  |-  ( A  e.  P.  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. ) )
74, 6mpd 13 1  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   ~Pcpw 3616   <.cop 3636    X. cxp 4674   ` cfv 5272   1stc1st 6226   2ndc2nd 6227   Q.cnq 7395   P.cnp 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fv 5280  df-1st 6228  df-2nd 6229  df-inp 7581
This theorem is referenced by:  elnp1st2nd  7591  0npr  7598  genpdf  7623  genipv  7624  genpelvl  7627  genpelvu  7628  genpml  7632  genpmu  7633  genprndl  7636  genprndu  7637  genpdisj  7638  genpassl  7639  genpassu  7640  addnqprl  7644  addnqpru  7645  addlocprlemeqgt  7647  addlocprlemgt  7649  addlocprlem  7650  addlocpr  7651  nqprl  7666  nqpru  7667  addnqprlemfl  7674  addnqprlemfu  7675  mulnqprl  7683  mulnqpru  7684  mullocprlem  7685  mullocpr  7686  mulnqprlemfl  7690  mulnqprlemfu  7691  addcomprg  7693  mulcomprg  7695  distrlem1prl  7697  distrlem1pru  7698  distrlem4prl  7699  distrlem4pru  7700  ltprordil  7704  1idprl  7705  1idpru  7706  ltpopr  7710  ltsopr  7711  ltaddpr  7712  ltexprlemm  7715  ltexprlemopl  7716  ltexprlemlol  7717  ltexprlemopu  7718  ltexprlemupu  7719  ltexprlemdisj  7721  ltexprlemloc  7722  ltexprlemfl  7724  ltexprlemrl  7725  ltexprlemfu  7726  ltexprlemru  7727  addcanprleml  7729  addcanprlemu  7730  prplnqu  7735  recexprlemm  7739  recexprlemdisj  7745  recexprlemloc  7746  recexprlem1ssl  7748  recexprlem1ssu  7749  recexprlemss1l  7750  recexprlemss1u  7751  aptiprleml  7754  aptiprlemu  7755  archpr  7758  cauappcvgprlemladdru  7771  cauappcvgprlemladdrl  7772  archrecpr  7779  caucvgprlemladdrl  7793  caucvgprprlemml  7809  caucvgprprlemmu  7810  caucvgprprlemopl  7812  suplocexprlemml  7831  suplocexprlemrl  7832  suplocexprlemmu  7833  suplocexprlemdisj  7835  suplocexprlemloc  7836  suplocexprlemex  7837  suplocexprlemub  7838
  Copyright terms: Public domain W3C validator