ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop Unicode version

Theorem prop 7588
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7584 . . . 4  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3189 . . 3  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6261 . . 3  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . 2  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 eleq1 2268 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  P.  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. ) )
65biimpcd 159 . 2  |-  ( A  e.  P.  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. ) )
74, 6mpd 13 1  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   ~Pcpw 3616   <.cop 3636    X. cxp 4673   ` cfv 5271   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393   P.cnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226  df-2nd 6227  df-inp 7579
This theorem is referenced by:  elnp1st2nd  7589  0npr  7596  genpdf  7621  genipv  7622  genpelvl  7625  genpelvu  7626  genpml  7630  genpmu  7631  genprndl  7634  genprndu  7635  genpdisj  7636  genpassl  7637  genpassu  7638  addnqprl  7642  addnqpru  7643  addlocprlemeqgt  7645  addlocprlemgt  7647  addlocprlem  7648  addlocpr  7649  nqprl  7664  nqpru  7665  addnqprlemfl  7672  addnqprlemfu  7673  mulnqprl  7681  mulnqpru  7682  mullocprlem  7683  mullocpr  7684  mulnqprlemfl  7688  mulnqprlemfu  7689  addcomprg  7691  mulcomprg  7693  distrlem1prl  7695  distrlem1pru  7696  distrlem4prl  7697  distrlem4pru  7698  ltprordil  7702  1idprl  7703  1idpru  7704  ltpopr  7708  ltsopr  7709  ltaddpr  7710  ltexprlemm  7713  ltexprlemopl  7714  ltexprlemlol  7715  ltexprlemopu  7716  ltexprlemupu  7717  ltexprlemdisj  7719  ltexprlemloc  7720  ltexprlemfl  7722  ltexprlemrl  7723  ltexprlemfu  7724  ltexprlemru  7725  addcanprleml  7727  addcanprlemu  7728  prplnqu  7733  recexprlemm  7737  recexprlemdisj  7743  recexprlemloc  7744  recexprlem1ssl  7746  recexprlem1ssu  7747  recexprlemss1l  7748  recexprlemss1u  7749  aptiprleml  7752  aptiprlemu  7753  archpr  7756  cauappcvgprlemladdru  7769  cauappcvgprlemladdrl  7770  archrecpr  7777  caucvgprlemladdrl  7791  caucvgprprlemml  7807  caucvgprprlemmu  7808  caucvgprprlemopl  7810  suplocexprlemml  7829  suplocexprlemrl  7830  suplocexprlemmu  7831  suplocexprlemdisj  7833  suplocexprlemloc  7834  suplocexprlemex  7835  suplocexprlemub  7836
  Copyright terms: Public domain W3C validator