ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop Unicode version

Theorem prop 7559
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7555 . . . 4  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3180 . . 3  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6242 . . 3  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . 2  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 eleq1 2259 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  P.  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. ) )
65biimpcd 159 . 2  |-  ( A  e.  P.  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. ) )
74, 6mpd 13 1  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ~Pcpw 3606   <.cop 3626    X. cxp 4662   ` cfv 5259   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364   P.cnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fv 5267  df-1st 6207  df-2nd 6208  df-inp 7550
This theorem is referenced by:  elnp1st2nd  7560  0npr  7567  genpdf  7592  genipv  7593  genpelvl  7596  genpelvu  7597  genpml  7601  genpmu  7602  genprndl  7605  genprndu  7606  genpdisj  7607  genpassl  7608  genpassu  7609  addnqprl  7613  addnqpru  7614  addlocprlemeqgt  7616  addlocprlemgt  7618  addlocprlem  7619  addlocpr  7620  nqprl  7635  nqpru  7636  addnqprlemfl  7643  addnqprlemfu  7644  mulnqprl  7652  mulnqpru  7653  mullocprlem  7654  mullocpr  7655  mulnqprlemfl  7659  mulnqprlemfu  7660  addcomprg  7662  mulcomprg  7664  distrlem1prl  7666  distrlem1pru  7667  distrlem4prl  7668  distrlem4pru  7669  ltprordil  7673  1idprl  7674  1idpru  7675  ltpopr  7679  ltsopr  7680  ltaddpr  7681  ltexprlemm  7684  ltexprlemopl  7685  ltexprlemlol  7686  ltexprlemopu  7687  ltexprlemupu  7688  ltexprlemdisj  7690  ltexprlemloc  7691  ltexprlemfl  7693  ltexprlemrl  7694  ltexprlemfu  7695  ltexprlemru  7696  addcanprleml  7698  addcanprlemu  7699  prplnqu  7704  recexprlemm  7708  recexprlemdisj  7714  recexprlemloc  7715  recexprlem1ssl  7717  recexprlem1ssu  7718  recexprlemss1l  7719  recexprlemss1u  7720  aptiprleml  7723  aptiprlemu  7724  archpr  7727  cauappcvgprlemladdru  7740  cauappcvgprlemladdrl  7741  archrecpr  7748  caucvgprlemladdrl  7762  caucvgprprlemml  7778  caucvgprprlemmu  7779  caucvgprprlemopl  7781  suplocexprlemml  7800  suplocexprlemrl  7801  suplocexprlemmu  7802  suplocexprlemdisj  7804  suplocexprlemloc  7805  suplocexprlemex  7806  suplocexprlemub  7807
  Copyright terms: Public domain W3C validator