ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop Unicode version

Theorem prop 7561
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7557 . . . 4  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3180 . . 3  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6242 . . 3  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . 2  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 eleq1 2259 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  P.  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. ) )
65biimpcd 159 . 2  |-  ( A  e.  P.  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. ) )
74, 6mpd 13 1  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ~Pcpw 3606   <.cop 3626    X. cxp 4662   ` cfv 5259   1stc1st 6205   2ndc2nd 6206   Q.cnq 7366   P.cnp 7377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fv 5267  df-1st 6207  df-2nd 6208  df-inp 7552
This theorem is referenced by:  elnp1st2nd  7562  0npr  7569  genpdf  7594  genipv  7595  genpelvl  7598  genpelvu  7599  genpml  7603  genpmu  7604  genprndl  7607  genprndu  7608  genpdisj  7609  genpassl  7610  genpassu  7611  addnqprl  7615  addnqpru  7616  addlocprlemeqgt  7618  addlocprlemgt  7620  addlocprlem  7621  addlocpr  7622  nqprl  7637  nqpru  7638  addnqprlemfl  7645  addnqprlemfu  7646  mulnqprl  7654  mulnqpru  7655  mullocprlem  7656  mullocpr  7657  mulnqprlemfl  7661  mulnqprlemfu  7662  addcomprg  7664  mulcomprg  7666  distrlem1prl  7668  distrlem1pru  7669  distrlem4prl  7670  distrlem4pru  7671  ltprordil  7675  1idprl  7676  1idpru  7677  ltpopr  7681  ltsopr  7682  ltaddpr  7683  ltexprlemm  7686  ltexprlemopl  7687  ltexprlemlol  7688  ltexprlemopu  7689  ltexprlemupu  7690  ltexprlemdisj  7692  ltexprlemloc  7693  ltexprlemfl  7695  ltexprlemrl  7696  ltexprlemfu  7697  ltexprlemru  7698  addcanprleml  7700  addcanprlemu  7701  prplnqu  7706  recexprlemm  7710  recexprlemdisj  7716  recexprlemloc  7717  recexprlem1ssl  7719  recexprlem1ssu  7720  recexprlemss1l  7721  recexprlemss1u  7722  aptiprleml  7725  aptiprlemu  7726  archpr  7729  cauappcvgprlemladdru  7742  cauappcvgprlemladdrl  7743  archrecpr  7750  caucvgprlemladdrl  7764  caucvgprprlemml  7780  caucvgprprlemmu  7781  caucvgprprlemopl  7783  suplocexprlemml  7802  suplocexprlemrl  7803  suplocexprlemmu  7804  suplocexprlemdisj  7806  suplocexprlemloc  7807  suplocexprlemex  7808  suplocexprlemub  7809
  Copyright terms: Public domain W3C validator