ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop Unicode version

Theorem prop 7231
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7227 . . . 4  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3059 . . 3  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6027 . . 3  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . 2  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 eleq1 2177 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  P.  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. ) )
65biimpcd 158 . 2  |-  ( A  e.  P.  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. ) )
74, 6mpd 13 1  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   ~Pcpw 3476   <.cop 3496    X. cxp 4497   ` cfv 5081   1stc1st 5990   2ndc2nd 5991   Q.cnq 7036   P.cnp 7047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-iota 5046  df-fun 5083  df-fv 5089  df-1st 5992  df-2nd 5993  df-inp 7222
This theorem is referenced by:  elnp1st2nd  7232  0npr  7239  genpdf  7264  genipv  7265  genpelvl  7268  genpelvu  7269  genpml  7273  genpmu  7274  genprndl  7277  genprndu  7278  genpdisj  7279  genpassl  7280  genpassu  7281  addnqprl  7285  addnqpru  7286  addlocprlemeqgt  7288  addlocprlemgt  7290  addlocprlem  7291  addlocpr  7292  nqprl  7307  nqpru  7308  addnqprlemfl  7315  addnqprlemfu  7316  mulnqprl  7324  mulnqpru  7325  mullocprlem  7326  mullocpr  7327  mulnqprlemfl  7331  mulnqprlemfu  7332  addcomprg  7334  mulcomprg  7336  distrlem1prl  7338  distrlem1pru  7339  distrlem4prl  7340  distrlem4pru  7341  ltprordil  7345  1idprl  7346  1idpru  7347  ltpopr  7351  ltsopr  7352  ltaddpr  7353  ltexprlemm  7356  ltexprlemopl  7357  ltexprlemlol  7358  ltexprlemopu  7359  ltexprlemupu  7360  ltexprlemdisj  7362  ltexprlemloc  7363  ltexprlemfl  7365  ltexprlemrl  7366  ltexprlemfu  7367  ltexprlemru  7368  addcanprleml  7370  addcanprlemu  7371  prplnqu  7376  recexprlemm  7380  recexprlemdisj  7386  recexprlemloc  7387  recexprlem1ssl  7389  recexprlem1ssu  7390  recexprlemss1l  7391  recexprlemss1u  7392  aptiprleml  7395  aptiprlemu  7396  archpr  7399  cauappcvgprlemladdru  7412  cauappcvgprlemladdrl  7413  archrecpr  7420  caucvgprlemladdrl  7434  caucvgprprlemml  7450  caucvgprprlemmu  7451  caucvgprprlemopl  7453
  Copyright terms: Public domain W3C validator