Colors of
variables: wff set class |
Syntax hints: wi 4
wceq 1353
wcel 2148
cpw 3576
cop 3596
cxp 4625
cfv 5217
c1st 6139
c2nd 6140
cnq 7279
cnp 7290 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709
ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions:
df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-iota 5179 df-fun 5219 df-fv 5225 df-1st 6141 df-2nd 6142 df-inp 7465 |
This theorem is referenced by: elnp1st2nd
7475 0npr
7482 genpdf
7507 genipv
7508 genpelvl
7511 genpelvu
7512 genpml
7516 genpmu
7517 genprndl
7520 genprndu
7521 genpdisj
7522 genpassl
7523 genpassu
7524 addnqprl
7528 addnqpru
7529 addlocprlemeqgt
7531 addlocprlemgt
7533 addlocprlem
7534 addlocpr
7535 nqprl
7550 nqpru
7551 addnqprlemfl
7558 addnqprlemfu
7559 mulnqprl
7567 mulnqpru
7568 mullocprlem
7569 mullocpr
7570 mulnqprlemfl
7574 mulnqprlemfu
7575 addcomprg
7577 mulcomprg
7579 distrlem1prl
7581 distrlem1pru
7582 distrlem4prl
7583 distrlem4pru
7584 ltprordil
7588 1idprl
7589 1idpru
7590 ltpopr
7594 ltsopr
7595 ltaddpr
7596 ltexprlemm
7599 ltexprlemopl
7600 ltexprlemlol
7601 ltexprlemopu
7602 ltexprlemupu
7603 ltexprlemdisj
7605 ltexprlemloc
7606 ltexprlemfl
7608 ltexprlemrl
7609 ltexprlemfu
7610 ltexprlemru
7611 addcanprleml
7613 addcanprlemu
7614 prplnqu
7619 recexprlemm
7623 recexprlemdisj
7629 recexprlemloc
7630 recexprlem1ssl
7632 recexprlem1ssu
7633 recexprlemss1l
7634 recexprlemss1u
7635 aptiprleml
7638 aptiprlemu
7639 archpr
7642 cauappcvgprlemladdru
7655 cauappcvgprlemladdrl
7656 archrecpr
7663 caucvgprlemladdrl
7677 caucvgprprlemml
7693 caucvgprprlemmu
7694 caucvgprprlemopl
7696 suplocexprlemml
7715 suplocexprlemrl
7716 suplocexprlemmu
7717 suplocexprlemdisj
7719 suplocexprlemloc
7720 suplocexprlemex
7721 suplocexprlemub
7722 |