ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop Unicode version

Theorem prop 7662
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7658 . . . 4  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3220 . . 3  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6321 . . 3  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . 2  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 eleq1 2292 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  P.  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. ) )
65biimpcd 159 . 2  |-  ( A  e.  P.  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. ) )
74, 6mpd 13 1  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ~Pcpw 3649   <.cop 3669    X. cxp 4717   ` cfv 5318   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467   P.cnp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6286  df-2nd 6287  df-inp 7653
This theorem is referenced by:  elnp1st2nd  7663  0npr  7670  genpdf  7695  genipv  7696  genpelvl  7699  genpelvu  7700  genpml  7704  genpmu  7705  genprndl  7708  genprndu  7709  genpdisj  7710  genpassl  7711  genpassu  7712  addnqprl  7716  addnqpru  7717  addlocprlemeqgt  7719  addlocprlemgt  7721  addlocprlem  7722  addlocpr  7723  nqprl  7738  nqpru  7739  addnqprlemfl  7746  addnqprlemfu  7747  mulnqprl  7755  mulnqpru  7756  mullocprlem  7757  mullocpr  7758  mulnqprlemfl  7762  mulnqprlemfu  7763  addcomprg  7765  mulcomprg  7767  distrlem1prl  7769  distrlem1pru  7770  distrlem4prl  7771  distrlem4pru  7772  ltprordil  7776  1idprl  7777  1idpru  7778  ltpopr  7782  ltsopr  7783  ltaddpr  7784  ltexprlemm  7787  ltexprlemopl  7788  ltexprlemlol  7789  ltexprlemopu  7790  ltexprlemupu  7791  ltexprlemdisj  7793  ltexprlemloc  7794  ltexprlemfl  7796  ltexprlemrl  7797  ltexprlemfu  7798  ltexprlemru  7799  addcanprleml  7801  addcanprlemu  7802  prplnqu  7807  recexprlemm  7811  recexprlemdisj  7817  recexprlemloc  7818  recexprlem1ssl  7820  recexprlem1ssu  7821  recexprlemss1l  7822  recexprlemss1u  7823  aptiprleml  7826  aptiprlemu  7827  archpr  7830  cauappcvgprlemladdru  7843  cauappcvgprlemladdrl  7844  archrecpr  7851  caucvgprlemladdrl  7865  caucvgprprlemml  7881  caucvgprprlemmu  7882  caucvgprprlemopl  7884  suplocexprlemml  7903  suplocexprlemrl  7904  suplocexprlemmu  7905  suplocexprlemdisj  7907  suplocexprlemloc  7908  suplocexprlemex  7909  suplocexprlemub  7910
  Copyright terms: Public domain W3C validator