ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prop Unicode version

Theorem prop 7416
Description: A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prop  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )

Proof of Theorem prop
StepHypRef Expression
1 npsspw 7412 . . . 4  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3138 . . 3  |-  ( A  e.  P.  ->  A  e.  ( ~P Q.  X.  ~P Q. ) )
3 1st2nd2 6143 . . 3  |-  ( A  e.  ( ~P Q.  X.  ~P Q. )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
42, 3syl 14 . 2  |-  ( A  e.  P.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
5 eleq1 2229 . . 3  |-  ( A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  ->  ( A  e.  P.  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  e.  P. ) )
65biimpcd 158 . 2  |-  ( A  e.  P.  ->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. ) )
74, 6mpd 13 1  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   ~Pcpw 3559   <.cop 3579    X. cxp 4602   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221   P.cnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-2nd 6109  df-inp 7407
This theorem is referenced by:  elnp1st2nd  7417  0npr  7424  genpdf  7449  genipv  7450  genpelvl  7453  genpelvu  7454  genpml  7458  genpmu  7459  genprndl  7462  genprndu  7463  genpdisj  7464  genpassl  7465  genpassu  7466  addnqprl  7470  addnqpru  7471  addlocprlemeqgt  7473  addlocprlemgt  7475  addlocprlem  7476  addlocpr  7477  nqprl  7492  nqpru  7493  addnqprlemfl  7500  addnqprlemfu  7501  mulnqprl  7509  mulnqpru  7510  mullocprlem  7511  mullocpr  7512  mulnqprlemfl  7516  mulnqprlemfu  7517  addcomprg  7519  mulcomprg  7521  distrlem1prl  7523  distrlem1pru  7524  distrlem4prl  7525  distrlem4pru  7526  ltprordil  7530  1idprl  7531  1idpru  7532  ltpopr  7536  ltsopr  7537  ltaddpr  7538  ltexprlemm  7541  ltexprlemopl  7542  ltexprlemlol  7543  ltexprlemopu  7544  ltexprlemupu  7545  ltexprlemdisj  7547  ltexprlemloc  7548  ltexprlemfl  7550  ltexprlemrl  7551  ltexprlemfu  7552  ltexprlemru  7553  addcanprleml  7555  addcanprlemu  7556  prplnqu  7561  recexprlemm  7565  recexprlemdisj  7571  recexprlemloc  7572  recexprlem1ssl  7574  recexprlem1ssu  7575  recexprlemss1l  7576  recexprlemss1u  7577  aptiprleml  7580  aptiprlemu  7581  archpr  7584  cauappcvgprlemladdru  7597  cauappcvgprlemladdrl  7598  archrecpr  7605  caucvgprlemladdrl  7619  caucvgprprlemml  7635  caucvgprprlemmu  7636  caucvgprprlemopl  7638  suplocexprlemml  7657  suplocexprlemrl  7658  suplocexprlemmu  7659  suplocexprlemdisj  7661  suplocexprlemloc  7662  suplocexprlemex  7663  suplocexprlemub  7664
  Copyright terms: Public domain W3C validator