ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npex Unicode version

Theorem npex 6935
Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
npex  |-  P.  e.  _V

Proof of Theorem npex
StepHypRef Expression
1 nqex 6825 . . . 4  |-  Q.  e.  _V
21pwex 3982 . . 3  |-  ~P Q.  e.  _V
32, 2xpex 4511 . 2  |-  ( ~P Q.  X.  ~P Q. )  e.  _V
4 npsspw 6933 . 2  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
53, 4ssexi 3942 1  |-  P.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1434   _Vcvv 2612   ~Pcpw 3406    X. cxp 4399   Q.cnq 6742   P.cnp 6753
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-qs 6228  df-ni 6766  df-nqqs 6810  df-inp 6928
This theorem is referenced by:  enrex  7186  addvalex  7284  axcnex  7299
  Copyright terms: Public domain W3C validator