ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmresval Unicode version

Theorem ofmresval 6193
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresval.f  |-  ( ph  ->  F  e.  A )
ofmresval.g  |-  ( ph  ->  G  e.  B )
Assertion
Ref Expression
ofmresval  |-  ( ph  ->  ( F (  oF R  |`  ( A  X.  B ) ) G )  =  ( F  oF R G ) )

Proof of Theorem ofmresval
StepHypRef Expression
1 ofmresval.f . 2  |-  ( ph  ->  F  e.  A )
2 ofmresval.g . 2  |-  ( ph  ->  G  e.  B )
3 ovres 6109 . 2  |-  ( ( F  e.  A  /\  G  e.  B )  ->  ( F (  oF R  |`  ( A  X.  B ) ) G )  =  ( F  oF R G ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( F (  oF R  |`  ( A  X.  B ) ) G )  =  ( F  oF R G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    X. cxp 4691    |` cres 4695  (class class class)co 5967    oFcof 6179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-res 4705  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  psradd  14556
  Copyright terms: Public domain W3C validator