ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmresval Unicode version

Theorem ofmresval 6070
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresval.f  |-  ( ph  ->  F  e.  A )
ofmresval.g  |-  ( ph  ->  G  e.  B )
Assertion
Ref Expression
ofmresval  |-  ( ph  ->  ( F (  oF R  |`  ( A  X.  B ) ) G )  =  ( F  oF R G ) )

Proof of Theorem ofmresval
StepHypRef Expression
1 ofmresval.f . 2  |-  ( ph  ->  F  e.  A )
2 ofmresval.g . 2  |-  ( ph  ->  G  e.  B )
3 ovres 5990 . 2  |-  ( ( F  e.  A  /\  G  e.  B )  ->  ( F (  oF R  |`  ( A  X.  B ) ) G )  =  ( F  oF R G ) )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( F (  oF R  |`  ( A  X.  B ) ) G )  =  ( F  oF R G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141    X. cxp 4607    |` cres 4611  (class class class)co 5851    oFcof 6057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-xp 4615  df-res 4621  df-iota 5158  df-fv 5204  df-ov 5854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator