ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmresval GIF version

Theorem ofmresval 6188
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresval.f (𝜑𝐹𝐴)
ofmresval.g (𝜑𝐺𝐵)
Assertion
Ref Expression
ofmresval (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹𝑓 𝑅𝐺))

Proof of Theorem ofmresval
StepHypRef Expression
1 ofmresval.f . 2 (𝜑𝐹𝐴)
2 ofmresval.g . 2 (𝜑𝐺𝐵)
3 ovres 6104 . 2 ((𝐹𝐴𝐺𝐵) → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹𝑓 𝑅𝐺))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹𝑓 𝑅𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177   × cxp 4686  cres 4690  (class class class)co 5962  𝑓 cof 6174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-xp 4694  df-res 4700  df-iota 5246  df-fv 5293  df-ov 5965
This theorem is referenced by:  psradd  14526
  Copyright terms: Public domain W3C validator