ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofmresval GIF version

Theorem ofmresval 6072
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresval.f (𝜑𝐹𝐴)
ofmresval.g (𝜑𝐺𝐵)
Assertion
Ref Expression
ofmresval (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹𝑓 𝑅𝐺))

Proof of Theorem ofmresval
StepHypRef Expression
1 ofmresval.f . 2 (𝜑𝐹𝐴)
2 ofmresval.g . 2 (𝜑𝐺𝐵)
3 ovres 5992 . 2 ((𝐹𝐴𝐺𝐵) → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹𝑓 𝑅𝐺))
41, 2, 3syl2anc 409 1 (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹𝑓 𝑅𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141   × cxp 4609  cres 4613  (class class class)co 5853  𝑓 cof 6059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-res 4623  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator