Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofmresval | GIF version |
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ofmresval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
ofmresval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
ofmresval | ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofmresval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
2 | ofmresval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | ovres 5992 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐵) → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 × cxp 4609 ↾ cres 4613 (class class class)co 5853 ∘𝑓 cof 6059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-res 4623 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |