| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofmresval | GIF version | ||
| Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
| Ref | Expression |
|---|---|
| ofmresval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| ofmresval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ofmresval | ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofmresval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
| 2 | ofmresval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 3 | ovres 6063 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐵) → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 × cxp 4661 ↾ cres 4665 (class class class)co 5922 ∘𝑓 cof 6133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-res 4675 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: psradd 14231 |
| Copyright terms: Public domain | W3C validator |