Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofrval | Unicode version |
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | |
offval.2 | |
offval.3 | |
offval.4 | |
offval.5 | |
ofrval.6 | |
ofrval.7 |
Ref | Expression |
---|---|
ofrval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . . . 6 | |
2 | offval.2 | . . . . . 6 | |
3 | offval.3 | . . . . . 6 | |
4 | offval.4 | . . . . . 6 | |
5 | offval.5 | . . . . . 6 | |
6 | eqidd 2166 | . . . . . 6 | |
7 | eqidd 2166 | . . . . . 6 | |
8 | 1, 2, 3, 4, 5, 6, 7 | ofrfval 6058 | . . . . 5 |
9 | 8 | biimpa 294 | . . . 4 |
10 | fveq2 5486 | . . . . . 6 | |
11 | fveq2 5486 | . . . . . 6 | |
12 | 10, 11 | breq12d 3995 | . . . . 5 |
13 | 12 | rspccv 2827 | . . . 4 |
14 | 9, 13 | syl 14 | . . 3 |
15 | 14 | 3impia 1190 | . 2 |
16 | simp1 987 | . . 3 | |
17 | inss1 3342 | . . . . 5 | |
18 | 5, 17 | eqsstrri 3175 | . . . 4 |
19 | simp3 989 | . . . 4 | |
20 | 18, 19 | sselid 3140 | . . 3 |
21 | ofrval.6 | . . 3 | |
22 | 16, 20, 21 | syl2anc 409 | . 2 |
23 | inss2 3343 | . . . . 5 | |
24 | 5, 23 | eqsstrri 3175 | . . . 4 |
25 | 24, 19 | sselid 3140 | . . 3 |
26 | ofrval.7 | . . 3 | |
27 | 16, 25, 26 | syl2anc 409 | . 2 |
28 | 15, 22, 27 | 3brtr3d 4013 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 cin 3115 class class class wbr 3982 wfn 5183 cfv 5188 cofr 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ofr 6051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |