ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrval Unicode version

Theorem ofrval 6071
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
ofrval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofrval.7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
Assertion
Ref Expression
ofrval  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  C R D )

Proof of Theorem ofrval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . . 6  |-  ( ph  ->  F  Fn  A )
2 offval.2 . . . . . 6  |-  ( ph  ->  G  Fn  B )
3 offval.3 . . . . . 6  |-  ( ph  ->  A  e.  V )
4 offval.4 . . . . . 6  |-  ( ph  ->  B  e.  W )
5 offval.5 . . . . . 6  |-  ( A  i^i  B )  =  S
6 eqidd 2171 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2171 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7ofrfval 6069 . . . . 5  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  S  ( F `  x ) R ( G `  x ) ) )
98biimpa 294 . . . 4  |-  ( (
ph  /\  F  oR R G )  ->  A. x  e.  S  ( F `  x ) R ( G `  x ) )
10 fveq2 5496 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
11 fveq2 5496 . . . . . 6  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
1210, 11breq12d 4002 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
) R ( G `
 x )  <->  ( F `  X ) R ( G `  X ) ) )
1312rspccv 2831 . . . 4  |-  ( A. x  e.  S  ( F `  x ) R ( G `  x )  ->  ( X  e.  S  ->  ( F `  X ) R ( G `  X ) ) )
149, 13syl 14 . . 3  |-  ( (
ph  /\  F  oR R G )  ->  ( X  e.  S  ->  ( F `  X ) R ( G `  X ) ) )
15143impia 1195 . 2  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  ( F `  X
) R ( G `
 X ) )
16 simp1 992 . . 3  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  ph )
17 inss1 3347 . . . . 5  |-  ( A  i^i  B )  C_  A
185, 17eqsstrri 3180 . . . 4  |-  S  C_  A
19 simp3 994 . . . 4  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  X  e.  S )
2018, 19sselid 3145 . . 3  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  X  e.  A )
21 ofrval.6 . . 3  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
2216, 20, 21syl2anc 409 . 2  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  ( F `  X
)  =  C )
23 inss2 3348 . . . . 5  |-  ( A  i^i  B )  C_  B
245, 23eqsstrri 3180 . . . 4  |-  S  C_  B
2524, 19sselid 3145 . . 3  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  X  e.  B )
26 ofrval.7 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
2716, 25, 26syl2anc 409 . 2  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  ( G `  X
)  =  D )
2815, 22, 273brtr3d 4020 1  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448    i^i cin 3120   class class class wbr 3989    Fn wfn 5193   ` cfv 5198    oRcofr 6060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ofr 6062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator