Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofrval | Unicode version |
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | |
offval.2 | |
offval.3 | |
offval.4 | |
offval.5 | |
ofrval.6 | |
ofrval.7 |
Ref | Expression |
---|---|
ofrval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . . . 6 | |
2 | offval.2 | . . . . . 6 | |
3 | offval.3 | . . . . . 6 | |
4 | offval.4 | . . . . . 6 | |
5 | offval.5 | . . . . . 6 | |
6 | eqidd 2176 | . . . . . 6 | |
7 | eqidd 2176 | . . . . . 6 | |
8 | 1, 2, 3, 4, 5, 6, 7 | ofrfval 6081 | . . . . 5 |
9 | 8 | biimpa 296 | . . . 4 |
10 | fveq2 5507 | . . . . . 6 | |
11 | fveq2 5507 | . . . . . 6 | |
12 | 10, 11 | breq12d 4011 | . . . . 5 |
13 | 12 | rspccv 2836 | . . . 4 |
14 | 9, 13 | syl 14 | . . 3 |
15 | 14 | 3impia 1200 | . 2 |
16 | simp1 997 | . . 3 | |
17 | inss1 3353 | . . . . 5 | |
18 | 5, 17 | eqsstrri 3186 | . . . 4 |
19 | simp3 999 | . . . 4 | |
20 | 18, 19 | sselid 3151 | . . 3 |
21 | ofrval.6 | . . 3 | |
22 | 16, 20, 21 | syl2anc 411 | . 2 |
23 | inss2 3354 | . . . . 5 | |
24 | 5, 23 | eqsstrri 3186 | . . . 4 |
25 | 24, 19 | sselid 3151 | . . 3 |
26 | ofrval.7 | . . 3 | |
27 | 16, 25, 26 | syl2anc 411 | . 2 |
28 | 15, 22, 27 | 3brtr3d 4029 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 cin 3126 class class class wbr 3998 wfn 5203 cfv 5208 cofr 6072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ofr 6074 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |