Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofrval | Unicode version |
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | |
offval.2 | |
offval.3 | |
offval.4 | |
offval.5 | |
ofrval.6 | |
ofrval.7 |
Ref | Expression |
---|---|
ofrval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . . . 6 | |
2 | offval.2 | . . . . . 6 | |
3 | offval.3 | . . . . . 6 | |
4 | offval.4 | . . . . . 6 | |
5 | offval.5 | . . . . . 6 | |
6 | eqidd 2171 | . . . . . 6 | |
7 | eqidd 2171 | . . . . . 6 | |
8 | 1, 2, 3, 4, 5, 6, 7 | ofrfval 6069 | . . . . 5 |
9 | 8 | biimpa 294 | . . . 4 |
10 | fveq2 5496 | . . . . . 6 | |
11 | fveq2 5496 | . . . . . 6 | |
12 | 10, 11 | breq12d 4002 | . . . . 5 |
13 | 12 | rspccv 2831 | . . . 4 |
14 | 9, 13 | syl 14 | . . 3 |
15 | 14 | 3impia 1195 | . 2 |
16 | simp1 992 | . . 3 | |
17 | inss1 3347 | . . . . 5 | |
18 | 5, 17 | eqsstrri 3180 | . . . 4 |
19 | simp3 994 | . . . 4 | |
20 | 18, 19 | sselid 3145 | . . 3 |
21 | ofrval.6 | . . 3 | |
22 | 16, 20, 21 | syl2anc 409 | . 2 |
23 | inss2 3348 | . . . . 5 | |
24 | 5, 23 | eqsstrri 3180 | . . . 4 |
25 | 24, 19 | sselid 3145 | . . 3 |
26 | ofrval.7 | . . 3 | |
27 | 16, 25, 26 | syl2anc 409 | . 2 |
28 | 15, 22, 27 | 3brtr3d 4020 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 cin 3120 class class class wbr 3989 wfn 5193 cfv 5198 cofr 6060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ofr 6062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |