| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofrval | Unicode version | ||
| Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 |
|
| offval.2 |
|
| offval.3 |
|
| offval.4 |
|
| offval.5 |
|
| ofrval.6 |
|
| ofrval.7 |
|
| Ref | Expression |
|---|---|
| ofrval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 |
. . . . . 6
| |
| 2 | offval.2 |
. . . . . 6
| |
| 3 | offval.3 |
. . . . . 6
| |
| 4 | offval.4 |
. . . . . 6
| |
| 5 | offval.5 |
. . . . . 6
| |
| 6 | eqidd 2197 |
. . . . . 6
| |
| 7 | eqidd 2197 |
. . . . . 6
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ofrfval 6148 |
. . . . 5
|
| 9 | 8 | biimpa 296 |
. . . 4
|
| 10 | fveq2 5561 |
. . . . . 6
| |
| 11 | fveq2 5561 |
. . . . . 6
| |
| 12 | 10, 11 | breq12d 4047 |
. . . . 5
|
| 13 | 12 | rspccv 2865 |
. . . 4
|
| 14 | 9, 13 | syl 14 |
. . 3
|
| 15 | 14 | 3impia 1202 |
. 2
|
| 16 | simp1 999 |
. . 3
| |
| 17 | inss1 3384 |
. . . . 5
| |
| 18 | 5, 17 | eqsstrri 3217 |
. . . 4
|
| 19 | simp3 1001 |
. . . 4
| |
| 20 | 18, 19 | sselid 3182 |
. . 3
|
| 21 | ofrval.6 |
. . 3
| |
| 22 | 16, 20, 21 | syl2anc 411 |
. 2
|
| 23 | inss2 3385 |
. . . . 5
| |
| 24 | 5, 23 | eqsstrri 3217 |
. . . 4
|
| 25 | 24, 19 | sselid 3182 |
. . 3
|
| 26 | ofrval.7 |
. . 3
| |
| 27 | 16, 25, 26 | syl2anc 411 |
. 2
|
| 28 | 15, 22, 27 | 3brtr3d 4065 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ofr 6140 |
| This theorem is referenced by: psrbaglesuppg 14302 |
| Copyright terms: Public domain | W3C validator |