ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovres Unicode version

Theorem ovres 6088
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.)
Assertion
Ref Expression
ovres  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A ( F  |`  ( C  X.  D
) ) B )  =  ( A F B ) )

Proof of Theorem ovres
StepHypRef Expression
1 opelxpi 4708 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
2 fvres 5602 . . 3  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  ( ( F  |`  ( C  X.  D ) ) `  <. A ,  B >. )  =  ( F `  <. A ,  B >. ) )
31, 2syl 14 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ( F  |`  ( C  X.  D
) ) `  <. A ,  B >. )  =  ( F `  <. A ,  B >. ) )
4 df-ov 5949 . 2  |-  ( A ( F  |`  ( C  X.  D ) ) B )  =  ( ( F  |`  ( C  X.  D ) ) `
 <. A ,  B >. )
5 df-ov 5949 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
63, 4, 53eqtr4g 2263 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A ( F  |`  ( C  X.  D
) ) B )  =  ( A F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   <.cop 3636    X. cxp 4674    |` cres 4678   ` cfv 5272  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-res 4688  df-iota 5233  df-fv 5280  df-ov 5949
This theorem is referenced by:  ovresd  6089  oprssov  6090  ofmresval  6172  elq  9745  mgmsscl  13226  grpissubg  13563  xmetres2  14884  blres  14939  xmetresbl  14945  mscl  14970  xmscl  14971  xmsge0  14972  xmseq0  14973  divcnap  15070  cncfmet  15097  mpodvdsmulf1o  15495
  Copyright terms: Public domain W3C validator