ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  off Unicode version

Theorem off 6171
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
off.2  |-  ( ph  ->  F : A --> S )
off.3  |-  ( ph  ->  G : B --> T )
off.4  |-  ( ph  ->  A  e.  V )
off.5  |-  ( ph  ->  B  e.  W )
off.6  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
off  |-  ( ph  ->  ( F  oF R G ) : C --> U )
Distinct variable groups:    y, G    x, y, ph    x, S, y    x, T, y    x, F, y   
x, R, y    x, U, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    G( x)    V( x, y)    W( x, y)

Proof of Theorem off
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . . 5  |-  ( ph  ->  F : A --> S )
2 off.6 . . . . . . 7  |-  ( A  i^i  B )  =  C
3 inss1 3393 . . . . . . 7  |-  ( A  i^i  B )  C_  A
42, 3eqsstrri 3226 . . . . . 6  |-  C  C_  A
54sseli 3189 . . . . 5  |-  ( z  e.  C  ->  z  e.  A )
6 ffvelcdm 5713 . . . . 5  |-  ( ( F : A --> S  /\  z  e.  A )  ->  ( F `  z
)  e.  S )
71, 5, 6syl2an 289 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  ( F `  z )  e.  S )
8 off.3 . . . . 5  |-  ( ph  ->  G : B --> T )
9 inss2 3394 . . . . . . 7  |-  ( A  i^i  B )  C_  B
102, 9eqsstrri 3226 . . . . . 6  |-  C  C_  B
1110sseli 3189 . . . . 5  |-  ( z  e.  C  ->  z  e.  B )
12 ffvelcdm 5713 . . . . 5  |-  ( ( G : B --> T  /\  z  e.  B )  ->  ( G `  z
)  e.  T )
138, 11, 12syl2an 289 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  ( G `  z )  e.  T )
14 off.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
1514ralrimivva 2588 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U )
1615adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U )
17 oveq1 5951 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
x R y )  =  ( ( F `
 z ) R y ) )
1817eleq1d 2274 . . . . 5  |-  ( x  =  ( F `  z )  ->  (
( x R y )  e.  U  <->  ( ( F `  z ) R y )  e.  U ) )
19 oveq2 5952 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
( F `  z
) R y )  =  ( ( F `
 z ) R ( G `  z
) ) )
2019eleq1d 2274 . . . . 5  |-  ( y  =  ( G `  z )  ->  (
( ( F `  z ) R y )  e.  U  <->  ( ( F `  z ) R ( G `  z ) )  e.  U ) )
2118, 20rspc2va 2891 . . . 4  |-  ( ( ( ( F `  z )  e.  S  /\  ( G `  z
)  e.  T )  /\  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U
)  ->  ( ( F `  z ) R ( G `  z ) )  e.  U )
227, 13, 16, 21syl21anc 1249 . . 3  |-  ( (
ph  /\  z  e.  C )  ->  (
( F `  z
) R ( G `
 z ) )  e.  U )
23 eqid 2205 . . 3  |-  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) )  =  ( z  e.  C  |->  ( ( F `
 z ) R ( G `  z
) ) )
2422, 23fmptd 5734 . 2  |-  ( ph  ->  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) : C --> U )
25 ffn 5425 . . . . 5  |-  ( F : A --> S  ->  F  Fn  A )
261, 25syl 14 . . . 4  |-  ( ph  ->  F  Fn  A )
27 ffn 5425 . . . . 5  |-  ( G : B --> T  ->  G  Fn  B )
288, 27syl 14 . . . 4  |-  ( ph  ->  G  Fn  B )
29 off.4 . . . 4  |-  ( ph  ->  A  e.  V )
30 off.5 . . . 4  |-  ( ph  ->  B  e.  W )
31 eqidd 2206 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  ( F `  z ) )
32 eqidd 2206 . . . 4  |-  ( (
ph  /\  z  e.  B )  ->  ( G `  z )  =  ( G `  z ) )
3326, 28, 29, 30, 2, 31, 32offval 6166 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) )
3433feq1d 5412 . 2  |-  ( ph  ->  ( ( F  oF R G ) : C --> U  <->  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) : C --> U ) )
3524, 34mpbird 167 1  |-  ( ph  ->  ( F  oF R G ) : C --> U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484    i^i cin 3165    |-> cmpt 4105    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944    oFcof 6156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158
This theorem is referenced by:  offeq  6172  ofnegsub  9035  lcomf  14089  psraddcl  14442  mplsubgfilemcl  14461  dvaddxxbr  15173  dvmulxxbr  15174  dvaddxx  15175  dvmulxx  15176  dviaddf  15177  dvimulf  15178  plyaddlem  15221
  Copyright terms: Public domain W3C validator