ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  off Unicode version

Theorem off 5994
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
off.2  |-  ( ph  ->  F : A --> S )
off.3  |-  ( ph  ->  G : B --> T )
off.4  |-  ( ph  ->  A  e.  V )
off.5  |-  ( ph  ->  B  e.  W )
off.6  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
off  |-  ( ph  ->  ( F  oF R G ) : C --> U )
Distinct variable groups:    y, G    x, y, ph    x, S, y    x, T, y    x, F, y   
x, R, y    x, U, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    G( x)    V( x, y)    W( x, y)

Proof of Theorem off
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . . 5  |-  ( ph  ->  F : A --> S )
2 off.6 . . . . . . 7  |-  ( A  i^i  B )  =  C
3 inss1 3296 . . . . . . 7  |-  ( A  i^i  B )  C_  A
42, 3eqsstrri 3130 . . . . . 6  |-  C  C_  A
54sseli 3093 . . . . 5  |-  ( z  e.  C  ->  z  e.  A )
6 ffvelrn 5553 . . . . 5  |-  ( ( F : A --> S  /\  z  e.  A )  ->  ( F `  z
)  e.  S )
71, 5, 6syl2an 287 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  ( F `  z )  e.  S )
8 off.3 . . . . 5  |-  ( ph  ->  G : B --> T )
9 inss2 3297 . . . . . . 7  |-  ( A  i^i  B )  C_  B
102, 9eqsstrri 3130 . . . . . 6  |-  C  C_  B
1110sseli 3093 . . . . 5  |-  ( z  e.  C  ->  z  e.  B )
12 ffvelrn 5553 . . . . 5  |-  ( ( G : B --> T  /\  z  e.  B )  ->  ( G `  z
)  e.  T )
138, 11, 12syl2an 287 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  ( G `  z )  e.  T )
14 off.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
1514ralrimivva 2514 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U )
1615adantr 274 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U )
17 oveq1 5781 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
x R y )  =  ( ( F `
 z ) R y ) )
1817eleq1d 2208 . . . . 5  |-  ( x  =  ( F `  z )  ->  (
( x R y )  e.  U  <->  ( ( F `  z ) R y )  e.  U ) )
19 oveq2 5782 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
( F `  z
) R y )  =  ( ( F `
 z ) R ( G `  z
) ) )
2019eleq1d 2208 . . . . 5  |-  ( y  =  ( G `  z )  ->  (
( ( F `  z ) R y )  e.  U  <->  ( ( F `  z ) R ( G `  z ) )  e.  U ) )
2118, 20rspc2va 2803 . . . 4  |-  ( ( ( ( F `  z )  e.  S  /\  ( G `  z
)  e.  T )  /\  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U
)  ->  ( ( F `  z ) R ( G `  z ) )  e.  U )
227, 13, 16, 21syl21anc 1215 . . 3  |-  ( (
ph  /\  z  e.  C )  ->  (
( F `  z
) R ( G `
 z ) )  e.  U )
23 eqid 2139 . . 3  |-  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) )  =  ( z  e.  C  |->  ( ( F `
 z ) R ( G `  z
) ) )
2422, 23fmptd 5574 . 2  |-  ( ph  ->  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) : C --> U )
25 ffn 5272 . . . . 5  |-  ( F : A --> S  ->  F  Fn  A )
261, 25syl 14 . . . 4  |-  ( ph  ->  F  Fn  A )
27 ffn 5272 . . . . 5  |-  ( G : B --> T  ->  G  Fn  B )
288, 27syl 14 . . . 4  |-  ( ph  ->  G  Fn  B )
29 off.4 . . . 4  |-  ( ph  ->  A  e.  V )
30 off.5 . . . 4  |-  ( ph  ->  B  e.  W )
31 eqidd 2140 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  ( F `  z ) )
32 eqidd 2140 . . . 4  |-  ( (
ph  /\  z  e.  B )  ->  ( G `  z )  =  ( G `  z ) )
3326, 28, 29, 30, 2, 31, 32offval 5989 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) )
3433feq1d 5259 . 2  |-  ( ph  ->  ( ( F  oF R G ) : C --> U  <->  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) : C --> U ) )
3524, 34mpbird 166 1  |-  ( ph  ->  ( F  oF R G ) : C --> U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416    i^i cin 3070    |-> cmpt 3989    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    oFcof 5980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982
This theorem is referenced by:  offeq  5995  dvaddxxbr  12843  dvmulxxbr  12844  dvaddxx  12845  dvmulxx  12846  dviaddf  12847  dvimulf  12848
  Copyright terms: Public domain W3C validator