| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > off | Unicode version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| off.1 |
|
| off.2 |
|
| off.3 |
|
| off.4 |
|
| off.5 |
|
| off.6 |
|
| Ref | Expression |
|---|---|
| off |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.2 |
. . . . 5
| |
| 2 | off.6 |
. . . . . . 7
| |
| 3 | inss1 3393 |
. . . . . . 7
| |
| 4 | 2, 3 | eqsstrri 3226 |
. . . . . 6
|
| 5 | 4 | sseli 3189 |
. . . . 5
|
| 6 | ffvelcdm 5713 |
. . . . 5
| |
| 7 | 1, 5, 6 | syl2an 289 |
. . . 4
|
| 8 | off.3 |
. . . . 5
| |
| 9 | inss2 3394 |
. . . . . . 7
| |
| 10 | 2, 9 | eqsstrri 3226 |
. . . . . 6
|
| 11 | 10 | sseli 3189 |
. . . . 5
|
| 12 | ffvelcdm 5713 |
. . . . 5
| |
| 13 | 8, 11, 12 | syl2an 289 |
. . . 4
|
| 14 | off.1 |
. . . . . 6
| |
| 15 | 14 | ralrimivva 2588 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | oveq1 5951 |
. . . . . 6
| |
| 18 | 17 | eleq1d 2274 |
. . . . 5
|
| 19 | oveq2 5952 |
. . . . . 6
| |
| 20 | 19 | eleq1d 2274 |
. . . . 5
|
| 21 | 18, 20 | rspc2va 2891 |
. . . 4
|
| 22 | 7, 13, 16, 21 | syl21anc 1249 |
. . 3
|
| 23 | eqid 2205 |
. . 3
| |
| 24 | 22, 23 | fmptd 5734 |
. 2
|
| 25 | ffn 5425 |
. . . . 5
| |
| 26 | 1, 25 | syl 14 |
. . . 4
|
| 27 | ffn 5425 |
. . . . 5
| |
| 28 | 8, 27 | syl 14 |
. . . 4
|
| 29 | off.4 |
. . . 4
| |
| 30 | off.5 |
. . . 4
| |
| 31 | eqidd 2206 |
. . . 4
| |
| 32 | eqidd 2206 |
. . . 4
| |
| 33 | 26, 28, 29, 30, 2, 31, 32 | offval 6166 |
. . 3
|
| 34 | 33 | feq1d 5412 |
. 2
|
| 35 | 24, 34 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 |
| This theorem is referenced by: offeq 6172 ofnegsub 9035 lcomf 14089 psraddcl 14442 mplsubgfilemcl 14461 dvaddxxbr 15173 dvmulxxbr 15174 dvaddxx 15175 dvmulxx 15176 dviaddf 15177 dvimulf 15178 plyaddlem 15221 |
| Copyright terms: Public domain | W3C validator |