| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > off | Unicode version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| off.1 |
|
| off.2 |
|
| off.3 |
|
| off.4 |
|
| off.5 |
|
| off.6 |
|
| Ref | Expression |
|---|---|
| off |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.2 |
. . . . 5
| |
| 2 | off.6 |
. . . . . . 7
| |
| 3 | inss1 3424 |
. . . . . . 7
| |
| 4 | 2, 3 | eqsstrri 3257 |
. . . . . 6
|
| 5 | 4 | sseli 3220 |
. . . . 5
|
| 6 | ffvelcdm 5768 |
. . . . 5
| |
| 7 | 1, 5, 6 | syl2an 289 |
. . . 4
|
| 8 | off.3 |
. . . . 5
| |
| 9 | inss2 3425 |
. . . . . . 7
| |
| 10 | 2, 9 | eqsstrri 3257 |
. . . . . 6
|
| 11 | 10 | sseli 3220 |
. . . . 5
|
| 12 | ffvelcdm 5768 |
. . . . 5
| |
| 13 | 8, 11, 12 | syl2an 289 |
. . . 4
|
| 14 | off.1 |
. . . . . 6
| |
| 15 | 14 | ralrimivva 2612 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | oveq1 6008 |
. . . . . 6
| |
| 18 | 17 | eleq1d 2298 |
. . . . 5
|
| 19 | oveq2 6009 |
. . . . . 6
| |
| 20 | 19 | eleq1d 2298 |
. . . . 5
|
| 21 | 18, 20 | rspc2va 2921 |
. . . 4
|
| 22 | 7, 13, 16, 21 | syl21anc 1270 |
. . 3
|
| 23 | eqid 2229 |
. . 3
| |
| 24 | 22, 23 | fmptd 5789 |
. 2
|
| 25 | ffn 5473 |
. . . . 5
| |
| 26 | 1, 25 | syl 14 |
. . . 4
|
| 27 | ffn 5473 |
. . . . 5
| |
| 28 | 8, 27 | syl 14 |
. . . 4
|
| 29 | off.4 |
. . . 4
| |
| 30 | off.5 |
. . . 4
| |
| 31 | eqidd 2230 |
. . . 4
| |
| 32 | eqidd 2230 |
. . . 4
| |
| 33 | 26, 28, 29, 30, 2, 31, 32 | offval 6226 |
. . 3
|
| 34 | 33 | feq1d 5460 |
. 2
|
| 35 | 24, 34 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-of 6218 |
| This theorem is referenced by: offeq 6232 ofnegsub 9109 lcomf 14291 psraddcl 14644 mplsubgfilemcl 14663 dvaddxxbr 15375 dvmulxxbr 15376 dvaddxx 15377 dvmulxx 15378 dviaddf 15379 dvimulf 15380 plyaddlem 15423 |
| Copyright terms: Public domain | W3C validator |