ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omelon2 Unicode version

Theorem omelon2 4609
Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.)
Assertion
Ref Expression
omelon2  |-  ( om  e.  _V  ->  om  e.  On )

Proof of Theorem omelon2
StepHypRef Expression
1 ordom 4608 . 2  |-  Ord  om
2 elong 4375 . 2  |-  ( om  e.  _V  ->  ( om  e.  On  <->  Ord  om )
)
31, 2mpbiri 168 1  |-  ( om  e.  _V  ->  om  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   _Vcvv 2739   Ord word 4364   Oncon0 4365   omcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592
This theorem is referenced by:  omelon  4610
  Copyright terms: Public domain W3C validator