| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omelon2 | GIF version | ||
| Description: Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon2 | ⊢ (ω ∈ V → ω ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 4676 | . 2 ⊢ Ord ω | |
| 2 | elong 4441 | . 2 ⊢ (ω ∈ V → (ω ∈ On ↔ Ord ω)) | |
| 3 | 1, 2 | mpbiri 168 | 1 ⊢ (ω ∈ V → ω ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Vcvv 2779 Ord word 4430 Oncon0 4431 ωcom 4659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-uni 3868 df-int 3903 df-tr 4162 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 |
| This theorem is referenced by: omelon 4678 |
| Copyright terms: Public domain | W3C validator |