Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | Unicode version |
Description: Mapping zero and one between and style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
Ref | Expression |
---|---|
012of.g | frec |
Ref | Expression |
---|---|
2o01f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 012of.g | . . . . . 6 frec | |
2 | 1 | frechashgf1o 10309 | . . . . 5 |
3 | f1of 5411 | . . . . 5 | |
4 | 2, 3 | ax-mp 5 | . . . 4 |
5 | 2onn 6461 | . . . . 5 | |
6 | omelon 4566 | . . . . . 6 | |
7 | 6 | onelssi 4388 | . . . . 5 |
8 | 5, 7 | ax-mp 5 | . . . 4 |
9 | fssres 5342 | . . . 4 | |
10 | 4, 8, 9 | mp2an 423 | . . 3 |
11 | ffn 5316 | . . 3 | |
12 | 10, 11 | ax-mp 5 | . 2 |
13 | fvres 5489 | . . . 4 | |
14 | elpri 3583 | . . . . . 6 | |
15 | df2o3 6371 | . . . . . 6 | |
16 | 14, 15 | eleq2s 2252 | . . . . 5 |
17 | fveq2 5465 | . . . . . . 7 | |
18 | 0zd 9162 | . . . . . . . . . 10 | |
19 | 18, 1 | frec2uz0d 10280 | . . . . . . . . 9 |
20 | 19 | mptru 1344 | . . . . . . . 8 |
21 | c0ex 7855 | . . . . . . . . 9 | |
22 | 21 | prid1 3665 | . . . . . . . 8 |
23 | 20, 22 | eqeltri 2230 | . . . . . . 7 |
24 | 17, 23 | eqeltrdi 2248 | . . . . . 6 |
25 | fveq2 5465 | . . . . . . 7 | |
26 | df-1o 6357 | . . . . . . . . . 10 | |
27 | 26 | fveq2i 5468 | . . . . . . . . 9 |
28 | peano1 4551 | . . . . . . . . . . . 12 | |
29 | 28 | a1i 9 | . . . . . . . . . . 11 |
30 | 18, 1, 29 | frec2uzsucd 10282 | . . . . . . . . . 10 |
31 | 30 | mptru 1344 | . . . . . . . . 9 |
32 | 20 | oveq1i 5828 | . . . . . . . . . 10 |
33 | 0p1e1 8930 | . . . . . . . . . 10 | |
34 | 32, 33 | eqtri 2178 | . . . . . . . . 9 |
35 | 27, 31, 34 | 3eqtri 2182 | . . . . . . . 8 |
36 | 1ex 7856 | . . . . . . . . 9 | |
37 | 36 | prid2 3666 | . . . . . . . 8 |
38 | 35, 37 | eqeltri 2230 | . . . . . . 7 |
39 | 25, 38 | eqeltrdi 2248 | . . . . . 6 |
40 | 24, 39 | jaoi 706 | . . . . 5 |
41 | 16, 40 | syl 14 | . . . 4 |
42 | 13, 41 | eqeltrd 2234 | . . 3 |
43 | 42 | rgen 2510 | . 2 |
44 | ffnfv 5622 | . 2 | |
45 | 12, 43, 44 | mpbir2an 927 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 698 wceq 1335 wtru 1336 wcel 2128 wral 2435 wss 3102 c0 3394 cpr 3561 cmpt 4025 csuc 4324 com 4547 cres 4585 wfn 5162 wf 5163 wf1o 5166 cfv 5167 (class class class)co 5818 freccfrec 6331 c1o 6350 c2o 6351 cc0 7715 c1 7716 caddc 7718 cn0 9073 cz 9150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-recs 6246 df-frec 6332 df-1o 6357 df-2o 6358 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-n0 9074 df-z 9151 df-uz 9423 |
This theorem is referenced by: isomninnlem 13563 iswomninnlem 13582 ismkvnnlem 13585 |
Copyright terms: Public domain | W3C validator |