Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2o01f Unicode version

Theorem 2o01f 15641
Description: Mapping zero and one between  om and  NN0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
Hypothesis
Ref Expression
012of.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
2o01f  |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }

Proof of Theorem 2o01f
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 012of.g . . . . . 6  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
21frechashgf1o 10520 . . . . 5  |-  G : om
-1-1-onto-> NN0
3 f1of 5504 . . . . 5  |-  ( G : om -1-1-onto-> NN0  ->  G : om
--> NN0 )
42, 3ax-mp 5 . . . 4  |-  G : om
--> NN0
5 2onn 6579 . . . . 5  |-  2o  e.  om
6 omelon 4645 . . . . . 6  |-  om  e.  On
76onelssi 4464 . . . . 5  |-  ( 2o  e.  om  ->  2o  C_ 
om )
85, 7ax-mp 5 . . . 4  |-  2o  C_  om
9 fssres 5433 . . . 4  |-  ( ( G : om --> NN0  /\  2o  C_  om )  -> 
( G  |`  2o ) : 2o --> NN0 )
104, 8, 9mp2an 426 . . 3  |-  ( G  |`  2o ) : 2o --> NN0
11 ffn 5407 . . 3  |-  ( ( G  |`  2o ) : 2o --> NN0  ->  ( G  |`  2o )  Fn  2o )
1210, 11ax-mp 5 . 2  |-  ( G  |`  2o )  Fn  2o
13 fvres 5582 . . . 4  |-  ( j  e.  2o  ->  (
( G  |`  2o ) `
 j )  =  ( G `  j
) )
14 elpri 3645 . . . . . 6  |-  ( j  e.  { (/) ,  1o }  ->  ( j  =  (/)  \/  j  =  1o ) )
15 df2o3 6488 . . . . . 6  |-  2o  =  { (/) ,  1o }
1614, 15eleq2s 2291 . . . . 5  |-  ( j  e.  2o  ->  (
j  =  (/)  \/  j  =  1o ) )
17 fveq2 5558 . . . . . . 7  |-  ( j  =  (/)  ->  ( G `
 j )  =  ( G `  (/) ) )
18 0zd 9338 . . . . . . . . . 10  |-  ( T. 
->  0  e.  ZZ )
1918, 1frec2uz0d 10491 . . . . . . . . 9  |-  ( T. 
->  ( G `  (/) )  =  0 )
2019mptru 1373 . . . . . . . 8  |-  ( G `
 (/) )  =  0
21 c0ex 8020 . . . . . . . . 9  |-  0  e.  _V
2221prid1 3728 . . . . . . . 8  |-  0  e.  { 0 ,  1 }
2320, 22eqeltri 2269 . . . . . . 7  |-  ( G `
 (/) )  e.  {
0 ,  1 }
2417, 23eqeltrdi 2287 . . . . . 6  |-  ( j  =  (/)  ->  ( G `
 j )  e. 
{ 0 ,  1 } )
25 fveq2 5558 . . . . . . 7  |-  ( j  =  1o  ->  ( G `  j )  =  ( G `  1o ) )
26 df-1o 6474 . . . . . . . . . 10  |-  1o  =  suc  (/)
2726fveq2i 5561 . . . . . . . . 9  |-  ( G `
 1o )  =  ( G `  suc  (/) )
28 peano1 4630 . . . . . . . . . . . 12  |-  (/)  e.  om
2928a1i 9 . . . . . . . . . . 11  |-  ( T. 
->  (/)  e.  om )
3018, 1, 29frec2uzsucd 10493 . . . . . . . . . 10  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
3130mptru 1373 . . . . . . . . 9  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
3220oveq1i 5932 . . . . . . . . . 10  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
33 0p1e1 9104 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3432, 33eqtri 2217 . . . . . . . . 9  |-  ( ( G `  (/) )  +  1 )  =  1
3527, 31, 343eqtri 2221 . . . . . . . 8  |-  ( G `
 1o )  =  1
36 1ex 8021 . . . . . . . . 9  |-  1  e.  _V
3736prid2 3729 . . . . . . . 8  |-  1  e.  { 0 ,  1 }
3835, 37eqeltri 2269 . . . . . . 7  |-  ( G `
 1o )  e. 
{ 0 ,  1 }
3925, 38eqeltrdi 2287 . . . . . 6  |-  ( j  =  1o  ->  ( G `  j )  e.  { 0 ,  1 } )
4024, 39jaoi 717 . . . . 5  |-  ( ( j  =  (/)  \/  j  =  1o )  ->  ( G `  j )  e.  { 0 ,  1 } )
4116, 40syl 14 . . . 4  |-  ( j  e.  2o  ->  ( G `  j )  e.  { 0 ,  1 } )
4213, 41eqeltrd 2273 . . 3  |-  ( j  e.  2o  ->  (
( G  |`  2o ) `
 j )  e. 
{ 0 ,  1 } )
4342rgen 2550 . 2  |-  A. j  e.  2o  ( ( G  |`  2o ) `  j
)  e.  { 0 ,  1 }
44 ffnfv 5720 . 2  |-  ( ( G  |`  2o ) : 2o --> { 0 ,  1 }  <->  ( ( G  |`  2o )  Fn  2o  /\  A. j  e.  2o  ( ( G  |`  2o ) `  j
)  e.  { 0 ,  1 } ) )
4512, 43, 44mpbir2an 944 1  |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1364   T. wtru 1365    e. wcel 2167   A.wral 2475    C_ wss 3157   (/)c0 3450   {cpr 3623    |-> cmpt 4094   suc csuc 4400   omcom 4626    |` cres 4665    Fn wfn 5253   -->wf 5254   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922  freccfrec 6448   1oc1o 6467   2oc2o 6468   0cc0 7879   1c1 7880    + caddc 7882   NN0cn0 9249   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602
This theorem is referenced by:  isomninnlem  15674  iswomninnlem  15693  ismkvnnlem  15696
  Copyright terms: Public domain W3C validator