| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | Unicode version | ||
| Description: Mapping zero and one
between |
| Ref | Expression |
|---|---|
| 012of.g |
|
| Ref | Expression |
|---|---|
| 2o01f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 012of.g |
. . . . . 6
| |
| 2 | 1 | frechashgf1o 10573 |
. . . . 5
|
| 3 | f1of 5522 |
. . . . 5
| |
| 4 | 2, 3 | ax-mp 5 |
. . . 4
|
| 5 | 2onn 6607 |
. . . . 5
| |
| 6 | omelon 4657 |
. . . . . 6
| |
| 7 | 6 | onelssi 4476 |
. . . . 5
|
| 8 | 5, 7 | ax-mp 5 |
. . . 4
|
| 9 | fssres 5451 |
. . . 4
| |
| 10 | 4, 8, 9 | mp2an 426 |
. . 3
|
| 11 | ffn 5425 |
. . 3
| |
| 12 | 10, 11 | ax-mp 5 |
. 2
|
| 13 | fvres 5600 |
. . . 4
| |
| 14 | elpri 3656 |
. . . . . 6
| |
| 15 | df2o3 6516 |
. . . . . 6
| |
| 16 | 14, 15 | eleq2s 2300 |
. . . . 5
|
| 17 | fveq2 5576 |
. . . . . . 7
| |
| 18 | 0zd 9384 |
. . . . . . . . . 10
| |
| 19 | 18, 1 | frec2uz0d 10544 |
. . . . . . . . 9
|
| 20 | 19 | mptru 1382 |
. . . . . . . 8
|
| 21 | c0ex 8066 |
. . . . . . . . 9
| |
| 22 | 21 | prid1 3739 |
. . . . . . . 8
|
| 23 | 20, 22 | eqeltri 2278 |
. . . . . . 7
|
| 24 | 17, 23 | eqeltrdi 2296 |
. . . . . 6
|
| 25 | fveq2 5576 |
. . . . . . 7
| |
| 26 | df-1o 6502 |
. . . . . . . . . 10
| |
| 27 | 26 | fveq2i 5579 |
. . . . . . . . 9
|
| 28 | peano1 4642 |
. . . . . . . . . . . 12
| |
| 29 | 28 | a1i 9 |
. . . . . . . . . . 11
|
| 30 | 18, 1, 29 | frec2uzsucd 10546 |
. . . . . . . . . 10
|
| 31 | 30 | mptru 1382 |
. . . . . . . . 9
|
| 32 | 20 | oveq1i 5954 |
. . . . . . . . . 10
|
| 33 | 0p1e1 9150 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | eqtri 2226 |
. . . . . . . . 9
|
| 35 | 27, 31, 34 | 3eqtri 2230 |
. . . . . . . 8
|
| 36 | 1ex 8067 |
. . . . . . . . 9
| |
| 37 | 36 | prid2 3740 |
. . . . . . . 8
|
| 38 | 35, 37 | eqeltri 2278 |
. . . . . . 7
|
| 39 | 25, 38 | eqeltrdi 2296 |
. . . . . 6
|
| 40 | 24, 39 | jaoi 718 |
. . . . 5
|
| 41 | 16, 40 | syl 14 |
. . . 4
|
| 42 | 13, 41 | eqeltrd 2282 |
. . 3
|
| 43 | 42 | rgen 2559 |
. 2
|
| 44 | ffnfv 5738 |
. 2
| |
| 45 | 12, 43, 44 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-1o 6502 df-2o 6503 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: isomninnlem 15973 iswomninnlem 15992 ismkvnnlem 15995 |
| Copyright terms: Public domain | W3C validator |