| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > enumctlemm | Unicode version | ||
| Description: Lemma for enumct 7181.  The case where  | 
| Ref | Expression | 
|---|---|
| enumctlemm.f | 
 | 
| enumctlemm.n | 
 | 
| enumctlemm.n0 | 
 | 
| enumctlemm.g | 
 | 
| Ref | Expression | 
|---|---|
| enumctlemm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | enumctlemm.f | 
. . . . . . 7
 | |
| 2 | fof 5480 | 
. . . . . . 7
 | |
| 3 | 1, 2 | syl 14 | 
. . . . . 6
 | 
| 4 | 3 | ffvelcdmda 5697 | 
. . . . 5
 | 
| 5 | 4 | adantlr 477 | 
. . . 4
 | 
| 6 | enumctlemm.n0 | 
. . . . . 6
 | |
| 7 | 3, 6 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 8 | 7 | ad2antrr 488 | 
. . . 4
 | 
| 9 | simpr 110 | 
. . . . 5
 | |
| 10 | enumctlemm.n | 
. . . . . 6
 | |
| 11 | 10 | adantr 276 | 
. . . . 5
 | 
| 12 | nndcel 6558 | 
. . . . 5
 | |
| 13 | 9, 11, 12 | syl2anc 411 | 
. . . 4
 | 
| 14 | 5, 8, 13 | ifcldadc 3590 | 
. . 3
 | 
| 15 | enumctlemm.g | 
. . 3
 | |
| 16 | 14, 15 | fmptd 5716 | 
. 2
 | 
| 17 | foelrn 5799 | 
. . . . . 6
 | |
| 18 | 1, 17 | sylan 283 | 
. . . . 5
 | 
| 19 | eleq1w 2257 | 
. . . . . . . . . . 11
 | |
| 20 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 21 | 19, 20 | ifbieq1d 3583 | 
. . . . . . . . . 10
 | 
| 22 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 23 | 10 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 24 | elnn 4642 | 
. . . . . . . . . . 11
 | |
| 25 | 22, 23, 24 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 26 | 22 | iftrued 3568 | 
. . . . . . . . . . 11
 | 
| 27 | 3 | ffvelcdmda 5697 | 
. . . . . . . . . . 11
 | 
| 28 | 26, 27 | eqeltrd 2273 | 
. . . . . . . . . 10
 | 
| 29 | 15, 21, 25, 28 | fvmptd3 5655 | 
. . . . . . . . 9
 | 
| 30 | 29, 26 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 31 | 30 | eqeq2d 2208 | 
. . . . . . 7
 | 
| 32 | 31 | rexbidva 2494 | 
. . . . . 6
 | 
| 33 | 32 | adantr 276 | 
. . . . 5
 | 
| 34 | 18, 33 | mpbird 167 | 
. . . 4
 | 
| 35 | omelon 4645 | 
. . . . . . 7
 | |
| 36 | 35 | onelssi 4464 | 
. . . . . 6
 | 
| 37 | ssrexv 3248 | 
. . . . . 6
 | |
| 38 | 10, 36, 37 | 3syl 17 | 
. . . . 5
 | 
| 39 | 38 | adantr 276 | 
. . . 4
 | 
| 40 | 34, 39 | mpd 13 | 
. . 3
 | 
| 41 | 40 | ralrimiva 2570 | 
. 2
 | 
| 42 | dffo3 5709 | 
. 2
 | |
| 43 | 16, 41, 42 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 | 
| This theorem is referenced by: enumct 7181 | 
| Copyright terms: Public domain | W3C validator |