ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumctlemm Unicode version

Theorem enumctlemm 7180
Description: Lemma for enumct 7181. The case where  N is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
Hypotheses
Ref Expression
enumctlemm.f  |-  ( ph  ->  F : N -onto-> A
)
enumctlemm.n  |-  ( ph  ->  N  e.  om )
enumctlemm.n0  |-  ( ph  -> 
(/)  e.  N )
enumctlemm.g  |-  G  =  ( k  e.  om  |->  if ( k  e.  N ,  ( F `  k ) ,  ( F `  (/) ) ) )
Assertion
Ref Expression
enumctlemm  |-  ( ph  ->  G : om -onto-> A
)
Distinct variable groups:    A, k    k, F    k, N    ph, k
Allowed substitution hint:    G( k)

Proof of Theorem enumctlemm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enumctlemm.f . . . . . . 7  |-  ( ph  ->  F : N -onto-> A
)
2 fof 5480 . . . . . . 7  |-  ( F : N -onto-> A  ->  F : N --> A )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  F : N --> A )
43ffvelcdmda 5697 . . . . 5  |-  ( (
ph  /\  k  e.  N )  ->  ( F `  k )  e.  A )
54adantlr 477 . . . 4  |-  ( ( ( ph  /\  k  e.  om )  /\  k  e.  N )  ->  ( F `  k )  e.  A )
6 enumctlemm.n0 . . . . . 6  |-  ( ph  -> 
(/)  e.  N )
73, 6ffvelcdmd 5698 . . . . 5  |-  ( ph  ->  ( F `  (/) )  e.  A )
87ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  k  e.  om )  /\  -.  k  e.  N )  ->  ( F `  (/) )  e.  A )
9 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  om )  ->  k  e.  om )
10 enumctlemm.n . . . . . 6  |-  ( ph  ->  N  e.  om )
1110adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  om )  ->  N  e.  om )
12 nndcel 6558 . . . . 5  |-  ( ( k  e.  om  /\  N  e.  om )  -> DECID  k  e.  N )
139, 11, 12syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  om )  -> DECID  k  e.  N
)
145, 8, 13ifcldadc 3590 . . 3  |-  ( (
ph  /\  k  e.  om )  ->  if (
k  e.  N , 
( F `  k
) ,  ( F `
 (/) ) )  e.  A )
15 enumctlemm.g . . 3  |-  G  =  ( k  e.  om  |->  if ( k  e.  N ,  ( F `  k ) ,  ( F `  (/) ) ) )
1614, 15fmptd 5716 . 2  |-  ( ph  ->  G : om --> A )
17 foelrn 5799 . . . . . 6  |-  ( ( F : N -onto-> A  /\  y  e.  A
)  ->  E. x  e.  N  y  =  ( F `  x ) )
181, 17sylan 283 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  E. x  e.  N  y  =  ( F `  x ) )
19 eleq1w 2257 . . . . . . . . . . 11  |-  ( k  =  x  ->  (
k  e.  N  <->  x  e.  N ) )
20 fveq2 5558 . . . . . . . . . . 11  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
2119, 20ifbieq1d 3583 . . . . . . . . . 10  |-  ( k  =  x  ->  if ( k  e.  N ,  ( F `  k ) ,  ( F `  (/) ) )  =  if ( x  e.  N ,  ( F `  x ) ,  ( F `  (/) ) ) )
22 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  N )  ->  x  e.  N )
2310adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  N )  ->  N  e.  om )
24 elnn 4642 . . . . . . . . . . 11  |-  ( ( x  e.  N  /\  N  e.  om )  ->  x  e.  om )
2522, 23, 24syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  N )  ->  x  e.  om )
2622iftrued 3568 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  N )  ->  if ( x  e.  N ,  ( F `  x ) ,  ( F `  (/) ) )  =  ( F `  x ) )
273ffvelcdmda 5697 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  N )  ->  ( F `  x )  e.  A )
2826, 27eqeltrd 2273 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  N )  ->  if ( x  e.  N ,  ( F `  x ) ,  ( F `  (/) ) )  e.  A )
2915, 21, 25, 28fvmptd3 5655 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  N )  ->  ( G `  x )  =  if ( x  e.  N ,  ( F `
 x ) ,  ( F `  (/) ) ) )
3029, 26eqtrd 2229 . . . . . . . 8  |-  ( (
ph  /\  x  e.  N )  ->  ( G `  x )  =  ( F `  x ) )
3130eqeq2d 2208 . . . . . . 7  |-  ( (
ph  /\  x  e.  N )  ->  (
y  =  ( G `
 x )  <->  y  =  ( F `  x ) ) )
3231rexbidva 2494 . . . . . 6  |-  ( ph  ->  ( E. x  e.  N  y  =  ( G `  x )  <->  E. x  e.  N  y  =  ( F `  x ) ) )
3332adantr 276 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  ( E. x  e.  N  y  =  ( G `  x )  <->  E. x  e.  N  y  =  ( F `  x ) ) )
3418, 33mpbird 167 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  E. x  e.  N  y  =  ( G `  x ) )
35 omelon 4645 . . . . . . 7  |-  om  e.  On
3635onelssi 4464 . . . . . 6  |-  ( N  e.  om  ->  N  C_ 
om )
37 ssrexv 3248 . . . . . 6  |-  ( N 
C_  om  ->  ( E. x  e.  N  y  =  ( G `  x )  ->  E. x  e.  om  y  =  ( G `  x ) ) )
3810, 36, 373syl 17 . . . . 5  |-  ( ph  ->  ( E. x  e.  N  y  =  ( G `  x )  ->  E. x  e.  om  y  =  ( G `  x ) ) )
3938adantr 276 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  ( E. x  e.  N  y  =  ( G `  x )  ->  E. x  e.  om  y  =  ( G `  x ) ) )
4034, 39mpd 13 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  E. x  e.  om  y  =  ( G `  x ) )
4140ralrimiva 2570 . 2  |-  ( ph  ->  A. y  e.  A  E. x  e.  om  y  =  ( G `  x ) )
42 dffo3 5709 . 2  |-  ( G : om -onto-> A  <->  ( G : om --> A  /\  A. y  e.  A  E. x  e.  om  y  =  ( G `  x ) ) )
4316, 41, 42sylanbrc 417 1  |-  ( ph  ->  G : om -onto-> A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   (/)c0 3450   ifcif 3561    |-> cmpt 4094   omcom 4626   -->wf 5254   -onto->wfo 5256   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by:  enumct  7181
  Copyright terms: Public domain W3C validator