ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumctlemm Unicode version

Theorem enumctlemm 6967
Description: Lemma for enumct 6968. The case where  N is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
Hypotheses
Ref Expression
enumctlemm.f  |-  ( ph  ->  F : N -onto-> A
)
enumctlemm.n  |-  ( ph  ->  N  e.  om )
enumctlemm.n0  |-  ( ph  -> 
(/)  e.  N )
enumctlemm.g  |-  G  =  ( k  e.  om  |->  if ( k  e.  N ,  ( F `  k ) ,  ( F `  (/) ) ) )
Assertion
Ref Expression
enumctlemm  |-  ( ph  ->  G : om -onto-> A
)
Distinct variable groups:    A, k    k, F    k, N    ph, k
Allowed substitution hint:    G( k)

Proof of Theorem enumctlemm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enumctlemm.f . . . . . . 7  |-  ( ph  ->  F : N -onto-> A
)
2 fof 5315 . . . . . . 7  |-  ( F : N -onto-> A  ->  F : N --> A )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  F : N --> A )
43ffvelrnda 5523 . . . . 5  |-  ( (
ph  /\  k  e.  N )  ->  ( F `  k )  e.  A )
54adantlr 468 . . . 4  |-  ( ( ( ph  /\  k  e.  om )  /\  k  e.  N )  ->  ( F `  k )  e.  A )
6 enumctlemm.n0 . . . . . 6  |-  ( ph  -> 
(/)  e.  N )
73, 6ffvelrnd 5524 . . . . 5  |-  ( ph  ->  ( F `  (/) )  e.  A )
87ad2antrr 479 . . . 4  |-  ( ( ( ph  /\  k  e.  om )  /\  -.  k  e.  N )  ->  ( F `  (/) )  e.  A )
9 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  om )  ->  k  e.  om )
10 enumctlemm.n . . . . . 6  |-  ( ph  ->  N  e.  om )
1110adantr 274 . . . . 5  |-  ( (
ph  /\  k  e.  om )  ->  N  e.  om )
12 nndcel 6364 . . . . 5  |-  ( ( k  e.  om  /\  N  e.  om )  -> DECID  k  e.  N )
139, 11, 12syl2anc 408 . . . 4  |-  ( (
ph  /\  k  e.  om )  -> DECID  k  e.  N
)
145, 8, 13ifcldadc 3471 . . 3  |-  ( (
ph  /\  k  e.  om )  ->  if (
k  e.  N , 
( F `  k
) ,  ( F `
 (/) ) )  e.  A )
15 enumctlemm.g . . 3  |-  G  =  ( k  e.  om  |->  if ( k  e.  N ,  ( F `  k ) ,  ( F `  (/) ) ) )
1614, 15fmptd 5542 . 2  |-  ( ph  ->  G : om --> A )
17 foelrn 5622 . . . . . 6  |-  ( ( F : N -onto-> A  /\  y  e.  A
)  ->  E. x  e.  N  y  =  ( F `  x ) )
181, 17sylan 281 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  E. x  e.  N  y  =  ( F `  x ) )
19 eleq1w 2178 . . . . . . . . . . 11  |-  ( k  =  x  ->  (
k  e.  N  <->  x  e.  N ) )
20 fveq2 5389 . . . . . . . . . . 11  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
2119, 20ifbieq1d 3464 . . . . . . . . . 10  |-  ( k  =  x  ->  if ( k  e.  N ,  ( F `  k ) ,  ( F `  (/) ) )  =  if ( x  e.  N ,  ( F `  x ) ,  ( F `  (/) ) ) )
22 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  N )  ->  x  e.  N )
2310adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  N )  ->  N  e.  om )
24 elnn 4489 . . . . . . . . . . 11  |-  ( ( x  e.  N  /\  N  e.  om )  ->  x  e.  om )
2522, 23, 24syl2anc 408 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  N )  ->  x  e.  om )
2622iftrued 3451 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  N )  ->  if ( x  e.  N ,  ( F `  x ) ,  ( F `  (/) ) )  =  ( F `  x ) )
273ffvelrnda 5523 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  N )  ->  ( F `  x )  e.  A )
2826, 27eqeltrd 2194 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  N )  ->  if ( x  e.  N ,  ( F `  x ) ,  ( F `  (/) ) )  e.  A )
2915, 21, 25, 28fvmptd3 5482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  N )  ->  ( G `  x )  =  if ( x  e.  N ,  ( F `
 x ) ,  ( F `  (/) ) ) )
3029, 26eqtrd 2150 . . . . . . . 8  |-  ( (
ph  /\  x  e.  N )  ->  ( G `  x )  =  ( F `  x ) )
3130eqeq2d 2129 . . . . . . 7  |-  ( (
ph  /\  x  e.  N )  ->  (
y  =  ( G `
 x )  <->  y  =  ( F `  x ) ) )
3231rexbidva 2411 . . . . . 6  |-  ( ph  ->  ( E. x  e.  N  y  =  ( G `  x )  <->  E. x  e.  N  y  =  ( F `  x ) ) )
3332adantr 274 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  ( E. x  e.  N  y  =  ( G `  x )  <->  E. x  e.  N  y  =  ( F `  x ) ) )
3418, 33mpbird 166 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  E. x  e.  N  y  =  ( G `  x ) )
35 omelon 4492 . . . . . . 7  |-  om  e.  On
3635onelssi 4321 . . . . . 6  |-  ( N  e.  om  ->  N  C_ 
om )
37 ssrexv 3132 . . . . . 6  |-  ( N 
C_  om  ->  ( E. x  e.  N  y  =  ( G `  x )  ->  E. x  e.  om  y  =  ( G `  x ) ) )
3810, 36, 373syl 17 . . . . 5  |-  ( ph  ->  ( E. x  e.  N  y  =  ( G `  x )  ->  E. x  e.  om  y  =  ( G `  x ) ) )
3938adantr 274 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  ( E. x  e.  N  y  =  ( G `  x )  ->  E. x  e.  om  y  =  ( G `  x ) ) )
4034, 39mpd 13 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  E. x  e.  om  y  =  ( G `  x ) )
4140ralrimiva 2482 . 2  |-  ( ph  ->  A. y  e.  A  E. x  e.  om  y  =  ( G `  x ) )
42 dffo3 5535 . 2  |-  ( G : om -onto-> A  <->  ( G : om --> A  /\  A. y  e.  A  E. x  e.  om  y  =  ( G `  x ) ) )
4316, 41, 42sylanbrc 413 1  |-  ( ph  ->  G : om -onto-> A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 804    = wceq 1316    e. wcel 1465   A.wral 2393   E.wrex 2394    C_ wss 3041   (/)c0 3333   ifcif 3444    |-> cmpt 3959   omcom 4474   -->wf 5089   -onto->wfo 5091   ` cfv 5093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fo 5099  df-fv 5101
This theorem is referenced by:  enumct  6968
  Copyright terms: Public domain W3C validator