| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enumctlemm | Unicode version | ||
| Description: Lemma for enumct 7229. The case where |
| Ref | Expression |
|---|---|
| enumctlemm.f |
|
| enumctlemm.n |
|
| enumctlemm.n0 |
|
| enumctlemm.g |
|
| Ref | Expression |
|---|---|
| enumctlemm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enumctlemm.f |
. . . . . . 7
| |
| 2 | fof 5507 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 14 |
. . . . . 6
|
| 4 | 3 | ffvelcdmda 5725 |
. . . . 5
|
| 5 | 4 | adantlr 477 |
. . . 4
|
| 6 | enumctlemm.n0 |
. . . . . 6
| |
| 7 | 3, 6 | ffvelcdmd 5726 |
. . . . 5
|
| 8 | 7 | ad2antrr 488 |
. . . 4
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | enumctlemm.n |
. . . . . 6
| |
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | nndcel 6596 |
. . . . 5
| |
| 13 | 9, 11, 12 | syl2anc 411 |
. . . 4
|
| 14 | 5, 8, 13 | ifcldadc 3602 |
. . 3
|
| 15 | enumctlemm.g |
. . 3
| |
| 16 | 14, 15 | fmptd 5744 |
. 2
|
| 17 | foelrn 5831 |
. . . . . 6
| |
| 18 | 1, 17 | sylan 283 |
. . . . 5
|
| 19 | eleq1w 2267 |
. . . . . . . . . . 11
| |
| 20 | fveq2 5586 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | ifbieq1d 3595 |
. . . . . . . . . 10
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | 10 | adantr 276 |
. . . . . . . . . . 11
|
| 24 | elnn 4659 |
. . . . . . . . . . 11
| |
| 25 | 22, 23, 24 | syl2anc 411 |
. . . . . . . . . 10
|
| 26 | 22 | iftrued 3580 |
. . . . . . . . . . 11
|
| 27 | 3 | ffvelcdmda 5725 |
. . . . . . . . . . 11
|
| 28 | 26, 27 | eqeltrd 2283 |
. . . . . . . . . 10
|
| 29 | 15, 21, 25, 28 | fvmptd3 5683 |
. . . . . . . . 9
|
| 30 | 29, 26 | eqtrd 2239 |
. . . . . . . 8
|
| 31 | 30 | eqeq2d 2218 |
. . . . . . 7
|
| 32 | 31 | rexbidva 2504 |
. . . . . 6
|
| 33 | 32 | adantr 276 |
. . . . 5
|
| 34 | 18, 33 | mpbird 167 |
. . . 4
|
| 35 | omelon 4662 |
. . . . . . 7
| |
| 36 | 35 | onelssi 4481 |
. . . . . 6
|
| 37 | ssrexv 3260 |
. . . . . 6
| |
| 38 | 10, 36, 37 | 3syl 17 |
. . . . 5
|
| 39 | 38 | adantr 276 |
. . . 4
|
| 40 | 34, 39 | mpd 13 |
. . 3
|
| 41 | 40 | ralrimiva 2580 |
. 2
|
| 42 | dffo3 5737 |
. 2
| |
| 43 | 16, 41, 42 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fo 5283 df-fv 5285 |
| This theorem is referenced by: enumct 7229 |
| Copyright terms: Public domain | W3C validator |