Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enumctlemm | Unicode version |
Description: Lemma for enumct 7080. The case where is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
enumctlemm.f | |
enumctlemm.n | |
enumctlemm.n0 | |
enumctlemm.g |
Ref | Expression |
---|---|
enumctlemm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enumctlemm.f | . . . . . . 7 | |
2 | fof 5410 | . . . . . . 7 | |
3 | 1, 2 | syl 14 | . . . . . 6 |
4 | 3 | ffvelrnda 5620 | . . . . 5 |
5 | 4 | adantlr 469 | . . . 4 |
6 | enumctlemm.n0 | . . . . . 6 | |
7 | 3, 6 | ffvelrnd 5621 | . . . . 5 |
8 | 7 | ad2antrr 480 | . . . 4 |
9 | simpr 109 | . . . . 5 | |
10 | enumctlemm.n | . . . . . 6 | |
11 | 10 | adantr 274 | . . . . 5 |
12 | nndcel 6468 | . . . . 5 DECID | |
13 | 9, 11, 12 | syl2anc 409 | . . . 4 DECID |
14 | 5, 8, 13 | ifcldadc 3549 | . . 3 |
15 | enumctlemm.g | . . 3 | |
16 | 14, 15 | fmptd 5639 | . 2 |
17 | foelrn 5721 | . . . . . 6 | |
18 | 1, 17 | sylan 281 | . . . . 5 |
19 | eleq1w 2227 | . . . . . . . . . . 11 | |
20 | fveq2 5486 | . . . . . . . . . . 11 | |
21 | 19, 20 | ifbieq1d 3542 | . . . . . . . . . 10 |
22 | simpr 109 | . . . . . . . . . . 11 | |
23 | 10 | adantr 274 | . . . . . . . . . . 11 |
24 | elnn 4583 | . . . . . . . . . . 11 | |
25 | 22, 23, 24 | syl2anc 409 | . . . . . . . . . 10 |
26 | 22 | iftrued 3527 | . . . . . . . . . . 11 |
27 | 3 | ffvelrnda 5620 | . . . . . . . . . . 11 |
28 | 26, 27 | eqeltrd 2243 | . . . . . . . . . 10 |
29 | 15, 21, 25, 28 | fvmptd3 5579 | . . . . . . . . 9 |
30 | 29, 26 | eqtrd 2198 | . . . . . . . 8 |
31 | 30 | eqeq2d 2177 | . . . . . . 7 |
32 | 31 | rexbidva 2463 | . . . . . 6 |
33 | 32 | adantr 274 | . . . . 5 |
34 | 18, 33 | mpbird 166 | . . . 4 |
35 | omelon 4586 | . . . . . . 7 | |
36 | 35 | onelssi 4407 | . . . . . 6 |
37 | ssrexv 3207 | . . . . . 6 | |
38 | 10, 36, 37 | 3syl 17 | . . . . 5 |
39 | 38 | adantr 274 | . . . 4 |
40 | 34, 39 | mpd 13 | . . 3 |
41 | 40 | ralrimiva 2539 | . 2 |
42 | dffo3 5632 | . 2 | |
43 | 16, 41, 42 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 c0 3409 cif 3520 cmpt 4043 com 4567 wf 5184 wfo 5186 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: enumct 7080 |
Copyright terms: Public domain | W3C validator |