| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enumctlemm | Unicode version | ||
| Description: Lemma for enumct 7270. The case where |
| Ref | Expression |
|---|---|
| enumctlemm.f |
|
| enumctlemm.n |
|
| enumctlemm.n0 |
|
| enumctlemm.g |
|
| Ref | Expression |
|---|---|
| enumctlemm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enumctlemm.f |
. . . . . . 7
| |
| 2 | fof 5544 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 14 |
. . . . . 6
|
| 4 | 3 | ffvelcdmda 5763 |
. . . . 5
|
| 5 | 4 | adantlr 477 |
. . . 4
|
| 6 | enumctlemm.n0 |
. . . . . 6
| |
| 7 | 3, 6 | ffvelcdmd 5764 |
. . . . 5
|
| 8 | 7 | ad2antrr 488 |
. . . 4
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | enumctlemm.n |
. . . . . 6
| |
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | nndcel 6636 |
. . . . 5
| |
| 13 | 9, 11, 12 | syl2anc 411 |
. . . 4
|
| 14 | 5, 8, 13 | ifcldadc 3632 |
. . 3
|
| 15 | enumctlemm.g |
. . 3
| |
| 16 | 14, 15 | fmptd 5782 |
. 2
|
| 17 | foelrn 5869 |
. . . . . 6
| |
| 18 | 1, 17 | sylan 283 |
. . . . 5
|
| 19 | eleq1w 2290 |
. . . . . . . . . . 11
| |
| 20 | fveq2 5623 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | ifbieq1d 3625 |
. . . . . . . . . 10
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | 10 | adantr 276 |
. . . . . . . . . . 11
|
| 24 | elnn 4695 |
. . . . . . . . . . 11
| |
| 25 | 22, 23, 24 | syl2anc 411 |
. . . . . . . . . 10
|
| 26 | 22 | iftrued 3609 |
. . . . . . . . . . 11
|
| 27 | 3 | ffvelcdmda 5763 |
. . . . . . . . . . 11
|
| 28 | 26, 27 | eqeltrd 2306 |
. . . . . . . . . 10
|
| 29 | 15, 21, 25, 28 | fvmptd3 5721 |
. . . . . . . . 9
|
| 30 | 29, 26 | eqtrd 2262 |
. . . . . . . 8
|
| 31 | 30 | eqeq2d 2241 |
. . . . . . 7
|
| 32 | 31 | rexbidva 2527 |
. . . . . 6
|
| 33 | 32 | adantr 276 |
. . . . 5
|
| 34 | 18, 33 | mpbird 167 |
. . . 4
|
| 35 | omelon 4698 |
. . . . . . 7
| |
| 36 | 35 | onelssi 4517 |
. . . . . 6
|
| 37 | ssrexv 3289 |
. . . . . 6
| |
| 38 | 10, 36, 37 | 3syl 17 |
. . . . 5
|
| 39 | 38 | adantr 276 |
. . . 4
|
| 40 | 34, 39 | mpd 13 |
. . 3
|
| 41 | 40 | ralrimiva 2603 |
. 2
|
| 42 | dffo3 5775 |
. 2
| |
| 43 | 16, 41, 42 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 |
| This theorem is referenced by: enumct 7270 |
| Copyright terms: Public domain | W3C validator |