| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enumctlemm | Unicode version | ||
| Description: Lemma for enumct 7190. The case where |
| Ref | Expression |
|---|---|
| enumctlemm.f |
|
| enumctlemm.n |
|
| enumctlemm.n0 |
|
| enumctlemm.g |
|
| Ref | Expression |
|---|---|
| enumctlemm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enumctlemm.f |
. . . . . . 7
| |
| 2 | fof 5483 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 14 |
. . . . . 6
|
| 4 | 3 | ffvelcdmda 5700 |
. . . . 5
|
| 5 | 4 | adantlr 477 |
. . . 4
|
| 6 | enumctlemm.n0 |
. . . . . 6
| |
| 7 | 3, 6 | ffvelcdmd 5701 |
. . . . 5
|
| 8 | 7 | ad2antrr 488 |
. . . 4
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | enumctlemm.n |
. . . . . 6
| |
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | nndcel 6567 |
. . . . 5
| |
| 13 | 9, 11, 12 | syl2anc 411 |
. . . 4
|
| 14 | 5, 8, 13 | ifcldadc 3591 |
. . 3
|
| 15 | enumctlemm.g |
. . 3
| |
| 16 | 14, 15 | fmptd 5719 |
. 2
|
| 17 | foelrn 5802 |
. . . . . 6
| |
| 18 | 1, 17 | sylan 283 |
. . . . 5
|
| 19 | eleq1w 2257 |
. . . . . . . . . . 11
| |
| 20 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | ifbieq1d 3584 |
. . . . . . . . . 10
|
| 22 | simpr 110 |
. . . . . . . . . . 11
| |
| 23 | 10 | adantr 276 |
. . . . . . . . . . 11
|
| 24 | elnn 4643 |
. . . . . . . . . . 11
| |
| 25 | 22, 23, 24 | syl2anc 411 |
. . . . . . . . . 10
|
| 26 | 22 | iftrued 3569 |
. . . . . . . . . . 11
|
| 27 | 3 | ffvelcdmda 5700 |
. . . . . . . . . . 11
|
| 28 | 26, 27 | eqeltrd 2273 |
. . . . . . . . . 10
|
| 29 | 15, 21, 25, 28 | fvmptd3 5658 |
. . . . . . . . 9
|
| 30 | 29, 26 | eqtrd 2229 |
. . . . . . . 8
|
| 31 | 30 | eqeq2d 2208 |
. . . . . . 7
|
| 32 | 31 | rexbidva 2494 |
. . . . . 6
|
| 33 | 32 | adantr 276 |
. . . . 5
|
| 34 | 18, 33 | mpbird 167 |
. . . 4
|
| 35 | omelon 4646 |
. . . . . . 7
| |
| 36 | 35 | onelssi 4465 |
. . . . . 6
|
| 37 | ssrexv 3249 |
. . . . . 6
| |
| 38 | 10, 36, 37 | 3syl 17 |
. . . . 5
|
| 39 | 38 | adantr 276 |
. . . 4
|
| 40 | 34, 39 | mpd 13 |
. . 3
|
| 41 | 40 | ralrimiva 2570 |
. 2
|
| 42 | dffo3 5712 |
. 2
| |
| 43 | 16, 41, 42 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fo 5265 df-fv 5267 |
| This theorem is referenced by: enumct 7190 |
| Copyright terms: Public domain | W3C validator |