Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemdc | Unicode version |
Description: Lemma for ennnfone 12358. A direct consequence of fidcenumlemrk 6919. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemdc.dceq | DECID |
ennnfonelemdc.f | |
ennnfonelemdc.p |
Ref | Expression |
---|---|
ennnfonelemdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemdc.dceq | . . 3 DECID | |
2 | ennnfonelemdc.f | . . 3 | |
3 | ennnfonelemdc.p | . . 3 | |
4 | omelon 4586 | . . . . 5 | |
5 | 4 | onelssi 4407 | . . . 4 |
6 | 3, 5 | syl 14 | . . 3 |
7 | fof 5410 | . . . . 5 | |
8 | 2, 7 | syl 14 | . . . 4 |
9 | 8, 3 | ffvelrnd 5621 | . . 3 |
10 | 1, 2, 3, 6, 9 | fidcenumlemrk 6919 | . 2 |
11 | df-dc 825 | . 2 DECID | |
12 | 10, 11 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 698 DECID wdc 824 wcel 2136 wral 2444 wss 3116 com 4567 cima 4607 wf 5184 wfo 5186 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: ennnfonelemg 12336 ennnfonelemp1 12339 ennnfonelemss 12343 ennnfonelemkh 12345 ennnfonelemhf1o 12346 |
Copyright terms: Public domain | W3C validator |