ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdc Unicode version

Theorem ennnfonelemdc 12450
Description: Lemma for ennnfone 12476. A direct consequence of fidcenumlemrk 6983. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemdc.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemdc.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemdc.p  |-  ( ph  ->  P  e.  om )
Assertion
Ref Expression
ennnfonelemdc  |-  ( ph  -> DECID  ( F `  P )  e.  ( F " P ) )
Distinct variable groups:    x, A, y   
x, F, y    x, P, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem ennnfonelemdc
StepHypRef Expression
1 ennnfonelemdc.dceq . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemdc.f . . 3  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemdc.p . . 3  |-  ( ph  ->  P  e.  om )
4 omelon 4626 . . . . 5  |-  om  e.  On
54onelssi 4447 . . . 4  |-  ( P  e.  om  ->  P  C_ 
om )
63, 5syl 14 . . 3  |-  ( ph  ->  P  C_  om )
7 fof 5457 . . . . 5  |-  ( F : om -onto-> A  ->  F : om --> A )
82, 7syl 14 . . . 4  |-  ( ph  ->  F : om --> A )
98, 3ffvelcdmd 5673 . . 3  |-  ( ph  ->  ( F `  P
)  e.  A )
101, 2, 3, 6, 9fidcenumlemrk 6983 . 2  |-  ( ph  ->  ( ( F `  P )  e.  ( F " P )  \/  -.  ( F `
 P )  e.  ( F " P
) ) )
11 df-dc 836 . 2  |-  (DECID  ( F `
 P )  e.  ( F " P
)  <->  ( ( F `
 P )  e.  ( F " P
)  \/  -.  ( F `  P )  e.  ( F " P
) ) )
1210, 11sylibr 134 1  |-  ( ph  -> DECID  ( F `  P )  e.  ( F " P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709  DECID wdc 835    e. wcel 2160   A.wral 2468    C_ wss 3144   omcom 4607   "cima 4647   -->wf 5231   -onto->wfo 5233   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fo 5241  df-fv 5243
This theorem is referenced by:  ennnfonelemg  12454  ennnfonelemp1  12457  ennnfonelemss  12461  ennnfonelemkh  12463  ennnfonelemhf1o  12464
  Copyright terms: Public domain W3C validator