Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemdc | Unicode version |
Description: Lemma for ennnfone 12367. A direct consequence of fidcenumlemrk 6927. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemdc.dceq | DECID |
ennnfonelemdc.f | |
ennnfonelemdc.p |
Ref | Expression |
---|---|
ennnfonelemdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemdc.dceq | . . 3 DECID | |
2 | ennnfonelemdc.f | . . 3 | |
3 | ennnfonelemdc.p | . . 3 | |
4 | omelon 4591 | . . . . 5 | |
5 | 4 | onelssi 4412 | . . . 4 |
6 | 3, 5 | syl 14 | . . 3 |
7 | fof 5418 | . . . . 5 | |
8 | 2, 7 | syl 14 | . . . 4 |
9 | 8, 3 | ffvelrnd 5629 | . . 3 |
10 | 1, 2, 3, 6, 9 | fidcenumlemrk 6927 | . 2 |
11 | df-dc 830 | . 2 DECID | |
12 | 10, 11 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 703 DECID wdc 829 wcel 2141 wral 2448 wss 3121 com 4572 cima 4612 wf 5192 wfo 5194 cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fo 5202 df-fv 5204 |
This theorem is referenced by: ennnfonelemg 12345 ennnfonelemp1 12348 ennnfonelemss 12352 ennnfonelemkh 12354 ennnfonelemhf1o 12355 |
Copyright terms: Public domain | W3C validator |