ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdc Unicode version

Theorem ennnfonelemdc 12616
Description: Lemma for ennnfone 12642. A direct consequence of fidcenumlemrk 7020. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemdc.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemdc.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemdc.p  |-  ( ph  ->  P  e.  om )
Assertion
Ref Expression
ennnfonelemdc  |-  ( ph  -> DECID  ( F `  P )  e.  ( F " P ) )
Distinct variable groups:    x, A, y   
x, F, y    x, P, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem ennnfonelemdc
StepHypRef Expression
1 ennnfonelemdc.dceq . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemdc.f . . 3  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemdc.p . . 3  |-  ( ph  ->  P  e.  om )
4 omelon 4645 . . . . 5  |-  om  e.  On
54onelssi 4464 . . . 4  |-  ( P  e.  om  ->  P  C_ 
om )
63, 5syl 14 . . 3  |-  ( ph  ->  P  C_  om )
7 fof 5480 . . . . 5  |-  ( F : om -onto-> A  ->  F : om --> A )
82, 7syl 14 . . . 4  |-  ( ph  ->  F : om --> A )
98, 3ffvelcdmd 5698 . . 3  |-  ( ph  ->  ( F `  P
)  e.  A )
101, 2, 3, 6, 9fidcenumlemrk 7020 . 2  |-  ( ph  ->  ( ( F `  P )  e.  ( F " P )  \/  -.  ( F `
 P )  e.  ( F " P
) ) )
11 df-dc 836 . 2  |-  (DECID  ( F `
 P )  e.  ( F " P
)  <->  ( ( F `
 P )  e.  ( F " P
)  \/  -.  ( F `  P )  e.  ( F " P
) ) )
1210, 11sylibr 134 1  |-  ( ph  -> DECID  ( F `  P )  e.  ( F " P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709  DECID wdc 835    e. wcel 2167   A.wral 2475    C_ wss 3157   omcom 4626   "cima 4666   -->wf 5254   -onto->wfo 5256   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by:  ennnfonelemg  12620  ennnfonelemp1  12623  ennnfonelemss  12627  ennnfonelemkh  12629  ennnfonelemhf1o  12630
  Copyright terms: Public domain W3C validator