ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdc Unicode version

Theorem ennnfonelemdc 12885
Description: Lemma for ennnfone 12911. A direct consequence of fidcenumlemrk 7082. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemdc.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemdc.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemdc.p  |-  ( ph  ->  P  e.  om )
Assertion
Ref Expression
ennnfonelemdc  |-  ( ph  -> DECID  ( F `  P )  e.  ( F " P ) )
Distinct variable groups:    x, A, y   
x, F, y    x, P, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem ennnfonelemdc
StepHypRef Expression
1 ennnfonelemdc.dceq . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemdc.f . . 3  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemdc.p . . 3  |-  ( ph  ->  P  e.  om )
4 omelon 4675 . . . . 5  |-  om  e.  On
54onelssi 4494 . . . 4  |-  ( P  e.  om  ->  P  C_ 
om )
63, 5syl 14 . . 3  |-  ( ph  ->  P  C_  om )
7 fof 5520 . . . . 5  |-  ( F : om -onto-> A  ->  F : om --> A )
82, 7syl 14 . . . 4  |-  ( ph  ->  F : om --> A )
98, 3ffvelcdmd 5739 . . 3  |-  ( ph  ->  ( F `  P
)  e.  A )
101, 2, 3, 6, 9fidcenumlemrk 7082 . 2  |-  ( ph  ->  ( ( F `  P )  e.  ( F " P )  \/  -.  ( F `
 P )  e.  ( F " P
) ) )
11 df-dc 837 . 2  |-  (DECID  ( F `
 P )  e.  ( F " P
)  <->  ( ( F `
 P )  e.  ( F " P
)  \/  -.  ( F `  P )  e.  ( F " P
) ) )
1210, 11sylibr 134 1  |-  ( ph  -> DECID  ( F `  P )  e.  ( F " P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    e. wcel 2178   A.wral 2486    C_ wss 3174   omcom 4656   "cima 4696   -->wf 5286   -onto->wfo 5288   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298
This theorem is referenced by:  ennnfonelemg  12889  ennnfonelemp1  12892  ennnfonelemss  12896  ennnfonelemkh  12898  ennnfonelemhf1o  12899
  Copyright terms: Public domain W3C validator