ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqop2 Unicode version

Theorem eqop2 6245
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
Hypotheses
Ref Expression
eqop2.1  |-  B  e. 
_V
eqop2.2  |-  C  e. 
_V
Assertion
Ref Expression
eqop2  |-  ( A  =  <. B ,  C >.  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )

Proof of Theorem eqop2
StepHypRef Expression
1 eqop2.1 . . . 4  |-  B  e. 
_V
2 eqop2.2 . . . 4  |-  C  e. 
_V
31, 2opelvv 4714 . . 3  |-  <. B ,  C >.  e.  ( _V 
X.  _V )
4 eleq1 2259 . . 3  |-  ( A  =  <. B ,  C >.  ->  ( A  e.  ( _V  X.  _V ) 
<-> 
<. B ,  C >.  e.  ( _V  X.  _V ) ) )
53, 4mpbiri 168 . 2  |-  ( A  =  <. B ,  C >.  ->  A  e.  ( _V  X.  _V )
)
6 eqop 6244 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  C >.  <-> 
( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )
75, 6biadan2 456 1  |-  ( A  =  <. B ,  C >.  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   <.cop 3626    X. cxp 4662   ` cfv 5259   1stc1st 6205   2ndc2nd 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-1st 6207  df-2nd 6208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator