ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqop2 Unicode version

Theorem eqop2 6202
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
Hypotheses
Ref Expression
eqop2.1  |-  B  e. 
_V
eqop2.2  |-  C  e. 
_V
Assertion
Ref Expression
eqop2  |-  ( A  =  <. B ,  C >.  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )

Proof of Theorem eqop2
StepHypRef Expression
1 eqop2.1 . . . 4  |-  B  e. 
_V
2 eqop2.2 . . . 4  |-  C  e. 
_V
31, 2opelvv 4694 . . 3  |-  <. B ,  C >.  e.  ( _V 
X.  _V )
4 eleq1 2252 . . 3  |-  ( A  =  <. B ,  C >.  ->  ( A  e.  ( _V  X.  _V ) 
<-> 
<. B ,  C >.  e.  ( _V  X.  _V ) ) )
53, 4mpbiri 168 . 2  |-  ( A  =  <. B ,  C >.  ->  A  e.  ( _V  X.  _V )
)
6 eqop 6201 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  C >.  <-> 
( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )
75, 6biadan2 456 1  |-  ( A  =  <. B ,  C >.  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   _Vcvv 2752   <.cop 3610    X. cxp 4642   ` cfv 5235   1stc1st 6162   2ndc2nd 6163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fo 5241  df-fv 5243  df-1st 6164  df-2nd 6165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator