ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqop2 Unicode version

Theorem eqop2 6231
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
Hypotheses
Ref Expression
eqop2.1  |-  B  e. 
_V
eqop2.2  |-  C  e. 
_V
Assertion
Ref Expression
eqop2  |-  ( A  =  <. B ,  C >.  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )

Proof of Theorem eqop2
StepHypRef Expression
1 eqop2.1 . . . 4  |-  B  e. 
_V
2 eqop2.2 . . . 4  |-  C  e. 
_V
31, 2opelvv 4709 . . 3  |-  <. B ,  C >.  e.  ( _V 
X.  _V )
4 eleq1 2256 . . 3  |-  ( A  =  <. B ,  C >.  ->  ( A  e.  ( _V  X.  _V ) 
<-> 
<. B ,  C >.  e.  ( _V  X.  _V ) ) )
53, 4mpbiri 168 . 2  |-  ( A  =  <. B ,  C >.  ->  A  e.  ( _V  X.  _V )
)
6 eqop 6230 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  C >.  <-> 
( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )
75, 6biadan2 456 1  |-  ( A  =  <. B ,  C >.  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3621    X. cxp 4657   ` cfv 5254   1stc1st 6191   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator