ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelvv GIF version

Theorem opelvv 4661
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opelvv.1 𝐴 ∈ V
opelvv.2 𝐵 ∈ V
Assertion
Ref Expression
opelvv 𝐴, 𝐵⟩ ∈ (V × V)

Proof of Theorem opelvv
StepHypRef Expression
1 opelvv.1 . 2 𝐴 ∈ V
2 opelvv.2 . 2 𝐵 ∈ V
3 opelxpi 4643 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
41, 2, 3mp2an 424 1 𝐴, 𝐵⟩ ∈ (V × V)
Colors of variables: wff set class
Syntax hints:  wcel 2141  Vcvv 2730  cop 3586   × cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by:  relsnop  4717  relopabi  4737  eqop2  6157
  Copyright terms: Public domain W3C validator