ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelvv GIF version

Theorem opelvv 4547
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opelvv.1 𝐴 ∈ V
opelvv.2 𝐵 ∈ V
Assertion
Ref Expression
opelvv 𝐴, 𝐵⟩ ∈ (V × V)

Proof of Theorem opelvv
StepHypRef Expression
1 opelvv.1 . 2 𝐴 ∈ V
2 opelvv.2 . 2 𝐵 ∈ V
3 opelxpi 4529 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
41, 2, 3mp2an 420 1 𝐴, 𝐵⟩ ∈ (V × V)
Colors of variables: wff set class
Syntax hints:  wcel 1461  Vcvv 2655  cop 3494   × cxp 4495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-opab 3948  df-xp 4503
This theorem is referenced by:  relsnop  4603  relopabi  4623  eqop2  6028
  Copyright terms: Public domain W3C validator