ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi1 GIF version

Theorem opi1 4247
Description: One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi1 {𝐴} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi1
StepHypRef Expression
1 opi1.1 . . . 4 𝐴 ∈ V
21snex 4200 . . 3 {𝐴} ∈ V
32prid1 3713 . 2 {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}}
4 opi1.2 . . 3 𝐵 ∈ V
51, 4dfop 3792 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
63, 5eleqtrri 2265 1 {𝐴} ∈ ⟨𝐴, 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2160  Vcvv 2752  {csn 3607  {cpr 3608  cop 3610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616
This theorem is referenced by:  opth1  4251  opth  4252
  Copyright terms: Public domain W3C validator