ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi1 GIF version

Theorem opi1 4261
Description: One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi1 {𝐴} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi1
StepHypRef Expression
1 opi1.1 . . . 4 𝐴 ∈ V
21snex 4214 . . 3 {𝐴} ∈ V
32prid1 3724 . 2 {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}}
4 opi1.2 . . 3 𝐵 ∈ V
51, 4dfop 3803 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
63, 5eleqtrri 2269 1 {𝐴} ∈ ⟨𝐴, 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  {csn 3618  {cpr 3619  cop 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627
This theorem is referenced by:  opth1  4265  opth  4266
  Copyright terms: Public domain W3C validator