| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opi1 | GIF version | ||
| Description: One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opi1.1 | ⊢ 𝐴 ∈ V |
| opi1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opi1 | ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opi1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | snex 4218 | . . 3 ⊢ {𝐴} ∈ V |
| 3 | 2 | prid1 3728 | . 2 ⊢ {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}} |
| 4 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 1, 4 | dfop 3807 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 6 | 3, 5 | eleqtrri 2272 | 1 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 {csn 3622 {cpr 3623 〈cop 3625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 |
| This theorem is referenced by: opth1 4269 opth 4270 |
| Copyright terms: Public domain | W3C validator |