![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opi1 | GIF version |
Description: One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opi1.1 | ⊢ 𝐴 ∈ V |
opi1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opi1 | ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opi1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | snex 4200 | . . 3 ⊢ {𝐴} ∈ V |
3 | 2 | prid1 3713 | . 2 ⊢ {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}} |
4 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 1, 4 | dfop 3792 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
6 | 3, 5 | eleqtrri 2265 | 1 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 Vcvv 2752 {csn 3607 {cpr 3608 〈cop 3610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 |
This theorem is referenced by: opth1 4251 opth 4252 |
Copyright terms: Public domain | W3C validator |