ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni Unicode version

Theorem elvvuni 4723
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )

Proof of Theorem elvvuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4721 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2763 . . . . . 6  |-  x  e. 
_V
3 vex 2763 . . . . . 6  |-  y  e. 
_V
42, 3uniop 4284 . . . . 5  |-  U. <. x ,  y >.  =  {
x ,  y }
52, 3opi2 4262 . . . . 5  |-  { x ,  y }  e.  <.
x ,  y >.
64, 5eqeltri 2266 . . . 4  |-  U. <. x ,  y >.  e.  <. x ,  y >.
7 unieq 3844 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  U. A  =  U. <. x ,  y >.
)
8 id 19 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  A  =  <. x ,  y >. )
97, 8eleq12d 2264 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( U. A  e.  A  <->  U. <. x ,  y
>.  e.  <. x ,  y
>. ) )
106, 9mpbiri 168 . . 3  |-  ( A  =  <. x ,  y
>.  ->  U. A  e.  A
)
1110exlimivv 1908 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  U. A  e.  A
)
121, 11sylbi 121 1  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   {cpr 3619   <.cop 3621   U.cuni 3835    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-opab 4091  df-xp 4665
This theorem is referenced by:  unielxp  6227
  Copyright terms: Public domain W3C validator