ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni Unicode version

Theorem elvvuni 4673
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )

Proof of Theorem elvvuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4671 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2733 . . . . . 6  |-  x  e. 
_V
3 vex 2733 . . . . . 6  |-  y  e. 
_V
42, 3uniop 4238 . . . . 5  |-  U. <. x ,  y >.  =  {
x ,  y }
52, 3opi2 4216 . . . . 5  |-  { x ,  y }  e.  <.
x ,  y >.
64, 5eqeltri 2243 . . . 4  |-  U. <. x ,  y >.  e.  <. x ,  y >.
7 unieq 3803 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  U. A  =  U. <. x ,  y >.
)
8 id 19 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  A  =  <. x ,  y >. )
97, 8eleq12d 2241 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( U. A  e.  A  <->  U. <. x ,  y
>.  e.  <. x ,  y
>. ) )
106, 9mpbiri 167 . . 3  |-  ( A  =  <. x ,  y
>.  ->  U. A  e.  A
)
1110exlimivv 1889 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  U. A  e.  A
)
121, 11sylbi 120 1  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   {cpr 3582   <.cop 3584   U.cuni 3794    X. cxp 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-opab 4049  df-xp 4615
This theorem is referenced by:  unielxp  6150
  Copyright terms: Public domain W3C validator