ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni Unicode version

Theorem elvvuni 4702
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )

Proof of Theorem elvvuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4700 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2752 . . . . . 6  |-  x  e. 
_V
3 vex 2752 . . . . . 6  |-  y  e. 
_V
42, 3uniop 4267 . . . . 5  |-  U. <. x ,  y >.  =  {
x ,  y }
52, 3opi2 4245 . . . . 5  |-  { x ,  y }  e.  <.
x ,  y >.
64, 5eqeltri 2260 . . . 4  |-  U. <. x ,  y >.  e.  <. x ,  y >.
7 unieq 3830 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  U. A  =  U. <. x ,  y >.
)
8 id 19 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  A  =  <. x ,  y >. )
97, 8eleq12d 2258 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( U. A  e.  A  <->  U. <. x ,  y
>.  e.  <. x ,  y
>. ) )
106, 9mpbiri 168 . . 3  |-  ( A  =  <. x ,  y
>.  ->  U. A  e.  A
)
1110exlimivv 1906 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  U. A  e.  A
)
121, 11sylbi 121 1  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363   E.wex 1502    e. wcel 2158   _Vcvv 2749   {cpr 3605   <.cop 3607   U.cuni 3821    X. cxp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-opab 4077  df-xp 4644
This theorem is referenced by:  unielxp  6188
  Copyright terms: Public domain W3C validator