ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni Unicode version

Theorem elvvuni 4668
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )

Proof of Theorem elvvuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4666 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2729 . . . . . 6  |-  x  e. 
_V
3 vex 2729 . . . . . 6  |-  y  e. 
_V
42, 3uniop 4233 . . . . 5  |-  U. <. x ,  y >.  =  {
x ,  y }
52, 3opi2 4211 . . . . 5  |-  { x ,  y }  e.  <.
x ,  y >.
64, 5eqeltri 2239 . . . 4  |-  U. <. x ,  y >.  e.  <. x ,  y >.
7 unieq 3798 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  U. A  =  U. <. x ,  y >.
)
8 id 19 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  A  =  <. x ,  y >. )
97, 8eleq12d 2237 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( U. A  e.  A  <->  U. <. x ,  y
>.  e.  <. x ,  y
>. ) )
106, 9mpbiri 167 . . 3  |-  ( A  =  <. x ,  y
>.  ->  U. A  e.  A
)
1110exlimivv 1884 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  U. A  e.  A
)
121, 11sylbi 120 1  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726   {cpr 3577   <.cop 3579   U.cuni 3789    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-opab 4044  df-xp 4610
This theorem is referenced by:  unielxp  6142
  Copyright terms: Public domain W3C validator