ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi2 GIF version

Theorem opi2 4263
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi2 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi2
StepHypRef Expression
1 opi1.1 . . . 4 𝐴 ∈ V
2 opi1.2 . . . 4 𝐵 ∈ V
3 prexg 4241 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
41, 2, 3mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
54prid2 3726 . 2 {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}}
61, 2dfop 3804 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
75, 6eleqtrri 2269 1 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  {csn 3619  {cpr 3620  cop 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628
This theorem is referenced by:  uniopel  4286  opeluu  4482  elvvuni  4724
  Copyright terms: Public domain W3C validator