ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi2 GIF version

Theorem opi2 4290
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi2 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi2
StepHypRef Expression
1 opi1.1 . . . 4 𝐴 ∈ V
2 opi1.2 . . . 4 𝐵 ∈ V
3 prexg 4266 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
41, 2, 3mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
54prid2 3745 . 2 {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}}
61, 2dfop 3827 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
75, 6eleqtrri 2282 1 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  {csn 3638  {cpr 3639  cop 3641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647
This theorem is referenced by:  uniopel  4314  opeluu  4510  elvvuni  4752
  Copyright terms: Public domain W3C validator