| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opi2 | GIF version | ||
| Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opi1.1 | ⊢ 𝐴 ∈ V |
| opi1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opi2 | ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opi1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opi1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | prexg 4254 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 5 | 4 | prid2 3739 | . 2 ⊢ {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}} |
| 6 | 1, 2 | dfop 3817 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 7 | 5, 6 | eleqtrri 2280 | 1 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 {csn 3632 {cpr 3633 〈cop 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 |
| This theorem is referenced by: uniopel 4300 opeluu 4496 elvvuni 4738 |
| Copyright terms: Public domain | W3C validator |