| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opi2 | GIF version | ||
| Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opi1.1 | ⊢ 𝐴 ∈ V |
| opi1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opi2 | ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opi1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opi1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | prexg 4266 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 5 | 4 | prid2 3745 | . 2 ⊢ {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}} |
| 6 | 1, 2 | dfop 3827 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 7 | 5, 6 | eleqtrri 2282 | 1 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 {csn 3638 {cpr 3639 〈cop 3641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 |
| This theorem is referenced by: uniopel 4314 opeluu 4510 elvvuni 4752 |
| Copyright terms: Public domain | W3C validator |