ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi2 GIF version

Theorem opi2 4318
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi2 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi2
StepHypRef Expression
1 opi1.1 . . . 4 𝐴 ∈ V
2 opi1.2 . . . 4 𝐵 ∈ V
3 prexg 4294 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
41, 2, 3mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
54prid2 3773 . 2 {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}}
61, 2dfop 3855 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
75, 6eleqtrri 2305 1 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  {csn 3666  {cpr 3667  cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  uniopel  4342  opeluu  4540  elvvuni  4782
  Copyright terms: Public domain W3C validator