ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniopel Unicode version

Theorem uniopel 4319
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1  |-  A  e. 
_V
opthw.2  |-  B  e. 
_V
Assertion
Ref Expression
uniopel  |-  ( <. A ,  B >.  e.  C  ->  U. <. A ,  B >.  e.  U. C
)

Proof of Theorem uniopel
StepHypRef Expression
1 opthw.1 . . . 4  |-  A  e. 
_V
2 opthw.2 . . . 4  |-  B  e. 
_V
31, 2uniop 4318 . . 3  |-  U. <. A ,  B >.  =  { A ,  B }
41, 2opi2 4295 . . 3  |-  { A ,  B }  e.  <. A ,  B >.
53, 4eqeltri 2280 . 2  |-  U. <. A ,  B >.  e.  <. A ,  B >.
6 elssuni 3892 . . 3  |-  ( <. A ,  B >.  e.  C  ->  <. A ,  B >.  C_  U. C )
76sseld 3200 . 2  |-  ( <. A ,  B >.  e.  C  ->  ( U. <. A ,  B >.  e. 
<. A ,  B >.  ->  U. <. A ,  B >.  e.  U. C ) )
85, 7mpi 15 1  |-  ( <. A ,  B >.  e.  C  ->  U. <. A ,  B >.  e.  U. C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   _Vcvv 2776   {cpr 3644   <.cop 3646   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865
This theorem is referenced by:  dmrnssfld  4960  unielrel  5229
  Copyright terms: Public domain W3C validator