| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opnzi | GIF version | ||
| Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4267). (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opth1.1 | ⊢ 𝐴 ∈ V |
| opth1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | opth1.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | opm 4267 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | 1, 2, 3 | mpbir2an 944 | . 2 ⊢ ∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 |
| 5 | n0r 3464 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 ≠ ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1506 ∈ wcel 2167 ≠ wne 2367 Vcvv 2763 ∅c0 3450 〈cop 3625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 |
| This theorem is referenced by: 0nelxp 4691 0neqopab 5967 |
| Copyright terms: Public domain | W3C validator |