ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnzi GIF version

Theorem opnzi 4268
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4267). (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opnzi 𝐴, 𝐵⟩ ≠ ∅

Proof of Theorem opnzi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . 3 𝐴 ∈ V
2 opth1.2 . . 3 𝐵 ∈ V
3 opm 4267 . . 3 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
41, 2, 3mpbir2an 944 . 2 𝑥 𝑥 ∈ ⟨𝐴, 𝐵
5 n0r 3464 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐵⟩ ≠ ∅)
64, 5ax-mp 5 1 𝐴, 𝐵⟩ ≠ ∅
Colors of variables: wff set class
Syntax hints:  wex 1506  wcel 2167  wne 2367  Vcvv 2763  c0 3450  cop 3625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631
This theorem is referenced by:  0nelxp  4691  0neqopab  5967
  Copyright terms: Public domain W3C validator