ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnzi GIF version

Theorem opnzi 4320
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4319). (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opnzi 𝐴, 𝐵⟩ ≠ ∅

Proof of Theorem opnzi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . 3 𝐴 ∈ V
2 opth1.2 . . 3 𝐵 ∈ V
3 opm 4319 . . 3 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
41, 2, 3mpbir2an 948 . 2 𝑥 𝑥 ∈ ⟨𝐴, 𝐵
5 n0r 3505 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐵⟩ ≠ ∅)
64, 5ax-mp 5 1 𝐴, 𝐵⟩ ≠ ∅
Colors of variables: wff set class
Syntax hints:  wex 1538  wcel 2200  wne 2400  Vcvv 2799  c0 3491  cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  0nelxp  4746  0neqopab  6048
  Copyright terms: Public domain W3C validator