ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnzi GIF version

Theorem opnzi 4125
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4124). (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opnzi 𝐴, 𝐵⟩ ≠ ∅

Proof of Theorem opnzi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . 3 𝐴 ∈ V
2 opth1.2 . . 3 𝐵 ∈ V
3 opm 4124 . . 3 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
41, 2, 3mpbir2an 909 . 2 𝑥 𝑥 ∈ ⟨𝐴, 𝐵
5 n0r 3344 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐵⟩ ≠ ∅)
64, 5ax-mp 5 1 𝐴, 𝐵⟩ ≠ ∅
Colors of variables: wff set class
Syntax hints:  wex 1451  wcel 1463  wne 2283  Vcvv 2658  c0 3331  cop 3498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504
This theorem is referenced by:  0nelxp  4535  0neqopab  5782
  Copyright terms: Public domain W3C validator