Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opnzi | GIF version |
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4219). (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | opm 4219 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | 1, 2, 3 | mpbir2an 937 | . 2 ⊢ ∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 |
5 | n0r 3428 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 ≠ ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∃wex 1485 ∈ wcel 2141 ≠ wne 2340 Vcvv 2730 ∅c0 3414 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: 0nelxp 4639 0neqopab 5898 |
Copyright terms: Public domain | W3C validator |