| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opnzi | GIF version | ||
| Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4319). (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opth1.1 | ⊢ 𝐴 ∈ V |
| opth1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | opth1.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | opm 4319 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | 1, 2, 3 | mpbir2an 948 | . 2 ⊢ ∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 |
| 5 | n0r 3505 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 ≠ ∅) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1538 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 ∅c0 3491 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: 0nelxp 4746 0neqopab 6048 |
| Copyright terms: Public domain | W3C validator |