![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opnzi | GIF version |
Description: An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4264). (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | opm 4264 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | 1, 2, 3 | mpbir2an 944 | . 2 ⊢ ∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 |
5 | n0r 3461 | . 2 ⊢ (∃𝑥 𝑥 ∈ 〈𝐴, 𝐵〉 → 〈𝐴, 𝐵〉 ≠ ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∃wex 1503 ∈ wcel 2164 ≠ wne 2364 Vcvv 2760 ∅c0 3447 〈cop 3622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 |
This theorem is referenced by: 0nelxp 4688 0neqopab 5964 |
Copyright terms: Public domain | W3C validator |