Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > otth2 | GIF version |
Description: Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
otth.1 | ⊢ 𝐴 ∈ V |
otth.2 | ⊢ 𝐵 ∈ V |
otth.3 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
otth2 | ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | otth.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | otth.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opth 4222 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
4 | 3 | anbi1i 455 | . 2 ⊢ ((〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∧ 𝑅 = 𝑆)) |
5 | 1, 2 | opex 4214 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V |
6 | otth.3 | . . 3 ⊢ 𝑅 ∈ V | |
7 | 5, 6 | opth 4222 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ∧ 𝑅 = 𝑆)) |
8 | df-3an 975 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∧ 𝑅 = 𝑆)) | |
9 | 4, 7, 8 | 3bitr4i 211 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑆〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ∧ 𝑅 = 𝑆)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 Vcvv 2730 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: otth 4227 oprabid 5885 eloprabga 5940 |
Copyright terms: Public domain | W3C validator |