ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otth2 GIF version

Theorem otth2 4284
Description: Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1 𝐴 ∈ V
otth.2 𝐵 ∈ V
otth.3 𝑅 ∈ V
Assertion
Ref Expression
otth2 (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))

Proof of Theorem otth2
StepHypRef Expression
1 otth.1 . . . 4 𝐴 ∈ V
2 otth.2 . . . 4 𝐵 ∈ V
31, 2opth 4280 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
43anbi1i 458 . 2 ((⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ∧ 𝑅 = 𝑆) ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∧ 𝑅 = 𝑆))
51, 2opex 4272 . . 3 𝐴, 𝐵⟩ ∈ V
6 otth.3 . . 3 𝑅 ∈ V
75, 6opth 4280 . 2 (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ∧ 𝑅 = 𝑆))
8 df-3an 982 . 2 ((𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆) ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∧ 𝑅 = 𝑆))
94, 7, 83bitr4i 212 1 (⟨⟨𝐴, 𝐵⟩, 𝑅⟩ = ⟨⟨𝐶, 𝐷⟩, 𝑆⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  Vcvv 2771  cop 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641
This theorem is referenced by:  otth  4285  oprabid  5966  eloprabga  6022
  Copyright terms: Public domain W3C validator