ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqan12rd Unicode version

Theorem oveqan12rd 5898
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
Hypotheses
Ref Expression
oveq1d.1  |-  ( ph  ->  A  =  B )
opreqan12i.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
oveqan12rd  |-  ( ( ps  /\  ph )  ->  ( A F C )  =  ( B F D ) )

Proof of Theorem oveqan12rd
StepHypRef Expression
1 oveq1d.1 . . 3  |-  ( ph  ->  A  =  B )
2 opreqan12i.2 . . 3  |-  ( ps 
->  C  =  D
)
31, 2oveqan12d 5897 . 2  |-  ( (
ph  /\  ps )  ->  ( A F C )  =  ( B F D ) )
43ancoms 268 1  |-  ( ( ps  /\  ph )  ->  ( A F C )  =  ( B F D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353  (class class class)co 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5881
This theorem is referenced by:  mulresr  7840  recdivap  8678  divgcdcoprm0  12104  ismhm  12860  dvid  14323
  Copyright terms: Public domain W3C validator