ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqan12rd Unicode version

Theorem oveqan12rd 5862
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
Hypotheses
Ref Expression
oveq1d.1  |-  ( ph  ->  A  =  B )
opreqan12i.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
oveqan12rd  |-  ( ( ps  /\  ph )  ->  ( A F C )  =  ( B F D ) )

Proof of Theorem oveqan12rd
StepHypRef Expression
1 oveq1d.1 . . 3  |-  ( ph  ->  A  =  B )
2 opreqan12i.2 . . 3  |-  ( ps 
->  C  =  D
)
31, 2oveqan12d 5861 . 2  |-  ( (
ph  /\  ps )  ->  ( A F C )  =  ( B F D ) )
43ancoms 266 1  |-  ( ( ps  /\  ph )  ->  ( A F C )  =  ( B F D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  mulresr  7779  recdivap  8614  divgcdcoprm0  12033  dvid  13302
  Copyright terms: Public domain W3C validator