| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqan12d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 |
|
| opreqan12i.2 |
|
| Ref | Expression |
|---|---|
| oveqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 |
. 2
| |
| 2 | opreqan12i.2 |
. 2
| |
| 3 | oveq12 5934 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: oveqan12rd 5945 offval 6147 offval3 6200 ecovdi 6714 ecovidi 6715 distrpig 7419 addcmpblnq 7453 addpipqqs 7456 mulpipq 7458 addcomnqg 7467 addcmpblnq0 7529 distrnq0 7545 recexprlem1ssl 7719 recexprlem1ssu 7720 1idsr 7854 addcnsrec 7928 mulcnsrec 7929 mulrid 8042 mulsub 8446 mulsub2 8447 muleqadd 8714 divmuldivap 8758 div2subap 8883 addltmul 9247 xnegdi 9962 fzsubel 10154 fzoval 10242 mulexp 10689 sqdivap 10714 crim 11042 readd 11053 remullem 11055 imadd 11061 cjadd 11068 cjreim 11087 sqrtmul 11219 sqabsadd 11239 sqabssub 11240 absmul 11253 abs2dif 11290 binom 11668 sinadd 11920 cosadd 11921 dvds2ln 12008 absmulgcd 12211 gcddiv 12213 bezoutr1 12227 lcmgcd 12273 nn0gcdsq 12395 crth 12419 pythagtriplem1 12461 pcqmul 12499 4sqlem4a 12587 4sqlem4 12588 prdsplusgval 12987 prdsmulrval 12989 idmhm 13173 resmhm 13191 eqgval 13431 idghm 13467 resghm 13468 isrhm 13792 rhmval 13807 xmetxp 14851 xmetxpbl 14852 txmetcnp 14862 divcnap 14909 rescncf 14925 relogoprlem 15212 lgsdir2 15382 |
| Copyright terms: Public domain | W3C validator |