| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqan12d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 |
|
| opreqan12i.2 |
|
| Ref | Expression |
|---|---|
| oveqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 |
. 2
| |
| 2 | opreqan12i.2 |
. 2
| |
| 3 | oveq12 5934 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: oveqan12rd 5945 offval 6147 offval3 6200 ecovdi 6714 ecovidi 6715 distrpig 7417 addcmpblnq 7451 addpipqqs 7454 mulpipq 7456 addcomnqg 7465 addcmpblnq0 7527 distrnq0 7543 recexprlem1ssl 7717 recexprlem1ssu 7718 1idsr 7852 addcnsrec 7926 mulcnsrec 7927 mulrid 8040 mulsub 8444 mulsub2 8445 muleqadd 8712 divmuldivap 8756 div2subap 8881 addltmul 9245 xnegdi 9960 fzsubel 10152 fzoval 10240 mulexp 10687 sqdivap 10712 crim 11040 readd 11051 remullem 11053 imadd 11059 cjadd 11066 cjreim 11085 sqrtmul 11217 sqabsadd 11237 sqabssub 11238 absmul 11251 abs2dif 11288 binom 11666 sinadd 11918 cosadd 11919 dvds2ln 12006 absmulgcd 12209 gcddiv 12211 bezoutr1 12225 lcmgcd 12271 nn0gcdsq 12393 crth 12417 pythagtriplem1 12459 pcqmul 12497 4sqlem4a 12585 4sqlem4 12586 prdsplusgval 12985 prdsmulrval 12987 idmhm 13171 resmhm 13189 eqgval 13429 idghm 13465 resghm 13466 isrhm 13790 rhmval 13805 xmetxp 14827 xmetxpbl 14828 txmetcnp 14838 divcnap 14885 rescncf 14901 relogoprlem 15188 lgsdir2 15358 |
| Copyright terms: Public domain | W3C validator |