| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqan12d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 |
|
| opreqan12i.2 |
|
| Ref | Expression |
|---|---|
| oveqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 |
. 2
| |
| 2 | opreqan12i.2 |
. 2
| |
| 3 | oveq12 6010 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: oveqan12rd 6021 offval 6226 offval3 6279 ecovdi 6793 ecovidi 6794 distrpig 7520 addcmpblnq 7554 addpipqqs 7557 mulpipq 7559 addcomnqg 7568 addcmpblnq0 7630 distrnq0 7646 recexprlem1ssl 7820 recexprlem1ssu 7821 1idsr 7955 addcnsrec 8029 mulcnsrec 8030 mulrid 8143 mulsub 8547 mulsub2 8548 muleqadd 8815 divmuldivap 8859 div2subap 8984 addltmul 9348 xnegdi 10064 fzsubel 10256 fzoval 10344 mulexp 10800 sqdivap 10825 crim 11369 readd 11380 remullem 11382 imadd 11388 cjadd 11395 cjreim 11414 sqrtmul 11546 sqabsadd 11566 sqabssub 11567 absmul 11580 abs2dif 11617 binom 11995 sinadd 12247 cosadd 12248 dvds2ln 12335 absmulgcd 12538 gcddiv 12540 bezoutr1 12554 lcmgcd 12600 nn0gcdsq 12722 crth 12746 pythagtriplem1 12788 pcqmul 12826 4sqlem4a 12914 4sqlem4 12915 prdsplusgval 13316 prdsmulrval 13318 idmhm 13502 resmhm 13520 eqgval 13760 idghm 13796 resghm 13797 isrhm 14122 rhmval 14137 xmetxp 15181 xmetxpbl 15182 txmetcnp 15192 divcnap 15239 rescncf 15255 relogoprlem 15542 lgsdir2 15712 |
| Copyright terms: Public domain | W3C validator |