![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveqan12d | Unicode version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
opreqan12i.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
oveqan12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opreqan12i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | oveq12 5928 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 289 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: oveqan12rd 5939 offval 6140 offval3 6188 ecovdi 6702 ecovidi 6703 distrpig 7395 addcmpblnq 7429 addpipqqs 7432 mulpipq 7434 addcomnqg 7443 addcmpblnq0 7505 distrnq0 7521 recexprlem1ssl 7695 recexprlem1ssu 7696 1idsr 7830 addcnsrec 7904 mulcnsrec 7905 mulrid 8018 mulsub 8422 mulsub2 8423 muleqadd 8689 divmuldivap 8733 div2subap 8858 addltmul 9222 xnegdi 9937 fzsubel 10129 fzoval 10217 mulexp 10652 sqdivap 10677 crim 11005 readd 11016 remullem 11018 imadd 11024 cjadd 11031 cjreim 11050 sqrtmul 11182 sqabsadd 11202 sqabssub 11203 absmul 11216 abs2dif 11253 binom 11630 sinadd 11882 cosadd 11883 dvds2ln 11970 absmulgcd 12157 gcddiv 12159 bezoutr1 12173 lcmgcd 12219 nn0gcdsq 12341 crth 12365 pythagtriplem1 12406 pcqmul 12444 4sqlem4a 12532 4sqlem4 12533 idmhm 13044 resmhm 13062 eqgval 13296 idghm 13332 resghm 13333 isrhm 13657 rhmval 13672 xmetxp 14686 xmetxpbl 14687 txmetcnp 14697 divcnap 14744 rescncf 14760 relogoprlem 15044 lgsdir2 15190 |
Copyright terms: Public domain | W3C validator |