| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqan12d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 |
|
| opreqan12i.2 |
|
| Ref | Expression |
|---|---|
| oveqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 |
. 2
| |
| 2 | opreqan12i.2 |
. 2
| |
| 3 | oveq12 5976 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: oveqan12rd 5987 offval 6189 offval3 6242 ecovdi 6756 ecovidi 6757 distrpig 7481 addcmpblnq 7515 addpipqqs 7518 mulpipq 7520 addcomnqg 7529 addcmpblnq0 7591 distrnq0 7607 recexprlem1ssl 7781 recexprlem1ssu 7782 1idsr 7916 addcnsrec 7990 mulcnsrec 7991 mulrid 8104 mulsub 8508 mulsub2 8509 muleqadd 8776 divmuldivap 8820 div2subap 8945 addltmul 9309 xnegdi 10025 fzsubel 10217 fzoval 10305 mulexp 10760 sqdivap 10785 crim 11284 readd 11295 remullem 11297 imadd 11303 cjadd 11310 cjreim 11329 sqrtmul 11461 sqabsadd 11481 sqabssub 11482 absmul 11495 abs2dif 11532 binom 11910 sinadd 12162 cosadd 12163 dvds2ln 12250 absmulgcd 12453 gcddiv 12455 bezoutr1 12469 lcmgcd 12515 nn0gcdsq 12637 crth 12661 pythagtriplem1 12703 pcqmul 12741 4sqlem4a 12829 4sqlem4 12830 prdsplusgval 13230 prdsmulrval 13232 idmhm 13416 resmhm 13434 eqgval 13674 idghm 13710 resghm 13711 isrhm 14035 rhmval 14050 xmetxp 15094 xmetxpbl 15095 txmetcnp 15105 divcnap 15152 rescncf 15168 relogoprlem 15455 lgsdir2 15625 |
| Copyright terms: Public domain | W3C validator |