Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveqan12d | Unicode version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | |
opreqan12i.2 |
Ref | Expression |
---|---|
oveqan12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 | |
2 | opreqan12i.2 | . 2 | |
3 | oveq12 5851 | . 2 | |
4 | 1, 2, 3 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: oveqan12rd 5862 offval 6057 offval3 6102 ecovdi 6612 ecovidi 6613 distrpig 7274 addcmpblnq 7308 addpipqqs 7311 mulpipq 7313 addcomnqg 7322 addcmpblnq0 7384 distrnq0 7400 recexprlem1ssl 7574 recexprlem1ssu 7575 1idsr 7709 addcnsrec 7783 mulcnsrec 7784 mulid1 7896 mulsub 8299 mulsub2 8300 muleqadd 8565 divmuldivap 8608 div2subap 8733 addltmul 9093 xnegdi 9804 fzsubel 9995 fzoval 10083 mulexp 10494 sqdivap 10519 crim 10800 readd 10811 remullem 10813 imadd 10819 cjadd 10826 cjreim 10845 sqrtmul 10977 sqabsadd 10997 sqabssub 10998 absmul 11011 abs2dif 11048 binom 11425 sinadd 11677 cosadd 11678 dvds2ln 11764 absmulgcd 11950 gcddiv 11952 bezoutr1 11966 lcmgcd 12010 nn0gcdsq 12132 crth 12156 pythagtriplem1 12197 pcqmul 12235 4sqlem4a 12321 4sqlem4 12322 xmetxp 13157 xmetxpbl 13158 txmetcnp 13168 divcnap 13205 rescncf 13218 relogoprlem 13439 lgsdir2 13584 |
Copyright terms: Public domain | W3C validator |