ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123d Unicode version

Theorem oveq123d 5899
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
oveq123d.1  |-  ( ph  ->  F  =  G )
oveq123d.2  |-  ( ph  ->  A  =  B )
oveq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
oveq123d  |-  ( ph  ->  ( A F C )  =  ( B G D ) )

Proof of Theorem oveq123d
StepHypRef Expression
1 oveq123d.1 . . 3  |-  ( ph  ->  F  =  G )
21oveqd 5895 . 2  |-  ( ph  ->  ( A F C )  =  ( A G C ) )
3 oveq123d.2 . . 3  |-  ( ph  ->  A  =  B )
4 oveq123d.3 . . 3  |-  ( ph  ->  C  =  D )
53, 4oveq12d 5896 . 2  |-  ( ph  ->  ( A G C )  =  ( B G D ) )
62, 5eqtrd 2210 1  |-  ( ph  ->  ( A F C )  =  ( B G D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353  (class class class)co 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5881
This theorem is referenced by:  csbov123g  5916  issgrp  12815  sgrp1  12822  ismndd  12844  grpsubfvalg  12924  grpsubpropdg  12980  subgsub  13052  releqgg  13086  eqgfval  13087  issrg  13154  srgidmlem  13167  isring  13189  ringass  13205  ringidmlem  13211  isringd  13226  ring1  13242  unitlinv  13301  unitrinv  13302  dvrfvald  13308  islmodd  13389
  Copyright terms: Public domain W3C validator