| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq123d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 |
|
| oveq123d.2 |
|
| oveq123d.3 |
|
| Ref | Expression |
|---|---|
| oveq123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 |
. . 3
| |
| 2 | 1 | oveqd 5942 |
. 2
|
| 3 | oveq123d.2 |
. . 3
| |
| 4 | oveq123d.3 |
. . 3
| |
| 5 | 3, 4 | oveq12d 5943 |
. 2
|
| 6 | 2, 5 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: csbov123g 5964 prdsplusgfval 12986 prdsmulrfval 12988 issgrp 13105 sgrp1 13113 issgrpd 13114 ismndd 13139 grpsubfvalg 13247 grpsubpropdg 13306 imasgrp 13317 subgsub 13392 releqgg 13426 eqgex 13427 eqgfval 13428 isrng 13566 isrngd 13585 issrg 13597 srgidmlem 13610 isring 13632 ringass 13648 ringidmlem 13654 isringd 13673 ring1 13691 unitlinv 13758 unitrinv 13759 dvrfvald 13765 islmodd 13925 islidlm 14111 rnglidlmsgrp 14129 rnglidlrng 14130 psrval 14296 |
| Copyright terms: Public domain | W3C validator |