| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq123d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 |
|
| oveq123d.2 |
|
| oveq123d.3 |
|
| Ref | Expression |
|---|---|
| oveq123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 |
. . 3
| |
| 2 | 1 | oveqd 5984 |
. 2
|
| 3 | oveq123d.2 |
. . 3
| |
| 4 | oveq123d.3 |
. . 3
| |
| 5 | 3, 4 | oveq12d 5985 |
. 2
|
| 6 | 2, 5 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: csbov123g 6006 prdsplusgfval 13231 prdsmulrfval 13233 issgrp 13350 sgrp1 13358 issgrpd 13359 ismndd 13384 grpsubfvalg 13492 grpsubpropdg 13551 imasgrp 13562 subgsub 13637 releqgg 13671 eqgex 13672 eqgfval 13673 isrng 13811 isrngd 13830 issrg 13842 srgidmlem 13855 isring 13877 ringass 13893 ringidmlem 13899 isringd 13918 ring1 13936 unitlinv 14003 unitrinv 14004 dvrfvald 14010 islmodd 14170 islidlm 14356 rnglidlmsgrp 14374 rnglidlrng 14375 psrval 14543 |
| Copyright terms: Public domain | W3C validator |