![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq123d | Unicode version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
oveq123d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
oveq123d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
oveq123d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveqd 5935 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | oveq123d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | oveq123d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | oveq12d 5936 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | eqtrd 2226 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: csbov123g 5956 issgrp 12986 sgrp1 12994 issgrpd 12995 ismndd 13018 grpsubfvalg 13117 grpsubpropdg 13176 imasgrp 13181 subgsub 13256 releqgg 13290 eqgex 13291 eqgfval 13292 isrng 13430 isrngd 13449 issrg 13461 srgidmlem 13474 isring 13496 ringass 13512 ringidmlem 13518 isringd 13537 ring1 13555 unitlinv 13622 unitrinv 13623 dvrfvald 13629 islmodd 13789 islidlm 13975 rnglidlmsgrp 13993 rnglidlrng 13994 psrval 14152 |
Copyright terms: Public domain | W3C validator |