ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123d Unicode version

Theorem oveq123d 5655
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
oveq123d.1  |-  ( ph  ->  F  =  G )
oveq123d.2  |-  ( ph  ->  A  =  B )
oveq123d.3  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
oveq123d  |-  ( ph  ->  ( A F C )  =  ( B G D ) )

Proof of Theorem oveq123d
StepHypRef Expression
1 oveq123d.1 . . 3  |-  ( ph  ->  F  =  G )
21oveqd 5651 . 2  |-  ( ph  ->  ( A F C )  =  ( A G C ) )
3 oveq123d.2 . . 3  |-  ( ph  ->  A  =  B )
4 oveq123d.3 . . 3  |-  ( ph  ->  C  =  D )
53, 4oveq12d 5652 . 2  |-  ( ph  ->  ( A G C )  =  ( B G D ) )
62, 5eqtrd 2120 1  |-  ( ph  ->  ( A F C )  =  ( B G D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289  (class class class)co 5634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637
This theorem is referenced by:  csbov123g  5669
  Copyright terms: Public domain W3C validator