| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq123d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 |
|
| oveq123d.2 |
|
| oveq123d.3 |
|
| Ref | Expression |
|---|---|
| oveq123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 |
. . 3
| |
| 2 | 1 | oveqd 6018 |
. 2
|
| 3 | oveq123d.2 |
. . 3
| |
| 4 | oveq123d.3 |
. . 3
| |
| 5 | 3, 4 | oveq12d 6019 |
. 2
|
| 6 | 2, 5 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: csbov123g 6040 prdsplusgfval 13317 prdsmulrfval 13319 issgrp 13436 sgrp1 13444 issgrpd 13445 ismndd 13470 grpsubfvalg 13578 grpsubpropdg 13637 imasgrp 13648 subgsub 13723 releqgg 13757 eqgex 13758 eqgfval 13759 isrng 13897 isrngd 13916 issrg 13928 srgidmlem 13941 isring 13963 ringass 13979 ringidmlem 13985 isringd 14004 ring1 14022 unitlinv 14090 unitrinv 14091 dvrfvald 14097 islmodd 14257 islidlm 14443 rnglidlmsgrp 14461 rnglidlrng 14462 psrval 14630 |
| Copyright terms: Public domain | W3C validator |