| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq123d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| oveq123d.1 |
|
| oveq123d.2 |
|
| oveq123d.3 |
|
| Ref | Expression |
|---|---|
| oveq123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq123d.1 |
. . 3
| |
| 2 | 1 | oveqd 5963 |
. 2
|
| 3 | oveq123d.2 |
. . 3
| |
| 4 | oveq123d.3 |
. . 3
| |
| 5 | 3, 4 | oveq12d 5964 |
. 2
|
| 6 | 2, 5 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: csbov123g 5985 prdsplusgfval 13149 prdsmulrfval 13151 issgrp 13268 sgrp1 13276 issgrpd 13277 ismndd 13302 grpsubfvalg 13410 grpsubpropdg 13469 imasgrp 13480 subgsub 13555 releqgg 13589 eqgex 13590 eqgfval 13591 isrng 13729 isrngd 13748 issrg 13760 srgidmlem 13773 isring 13795 ringass 13811 ringidmlem 13817 isringd 13836 ring1 13854 unitlinv 13921 unitrinv 13922 dvrfvald 13928 islmodd 14088 islidlm 14274 rnglidlmsgrp 14292 rnglidlrng 14293 psrval 14461 |
| Copyright terms: Public domain | W3C validator |