| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oveq123d | Unicode version | ||
| Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| oveq123d.1 | 
 | 
| oveq123d.2 | 
 | 
| oveq123d.3 | 
 | 
| Ref | Expression | 
|---|---|
| oveq123d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq123d.1 | 
. . 3
 | |
| 2 | 1 | oveqd 5939 | 
. 2
 | 
| 3 | oveq123d.2 | 
. . 3
 | |
| 4 | oveq123d.3 | 
. . 3
 | |
| 5 | 3, 4 | oveq12d 5940 | 
. 2
 | 
| 6 | 2, 5 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: csbov123g 5960 issgrp 13046 sgrp1 13054 issgrpd 13055 ismndd 13078 grpsubfvalg 13177 grpsubpropdg 13236 imasgrp 13241 subgsub 13316 releqgg 13350 eqgex 13351 eqgfval 13352 isrng 13490 isrngd 13509 issrg 13521 srgidmlem 13534 isring 13556 ringass 13572 ringidmlem 13578 isringd 13597 ring1 13615 unitlinv 13682 unitrinv 13683 dvrfvald 13689 islmodd 13849 islidlm 14035 rnglidlmsgrp 14053 rnglidlrng 14054 psrval 14220 | 
| Copyright terms: Public domain | W3C validator |