ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulresr Unicode version

Theorem mulresr 7639
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
Assertion
Ref Expression
mulresr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )

Proof of Theorem mulresr
StepHypRef Expression
1 0r 7551 . . 3  |-  0R  e.  R.
2 mulcnsr 7636 . . . 4  |-  ( ( ( A  e.  R.  /\  0R  e.  R. )  /\  ( B  e.  R.  /\  0R  e.  R. )
)  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) ) >. )
32an4s 577 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( 0R  e.  R.  /\  0R  e.  R. )
)  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) ) >. )
41, 1, 3mpanr12 435 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. (
( A  .R  B
)  +R  ( -1R 
.R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )
>. )
5 00sr 7570 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 5 . . . . . . 7  |-  ( 0R 
.R  0R )  =  0R
76oveq2i 5778 . . . . . 6  |-  ( -1R 
.R  ( 0R  .R  0R ) )  =  ( -1R  .R  0R )
8 m1r 7553 . . . . . . 7  |-  -1R  e.  R.
9 00sr 7570 . . . . . . 7  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  0R )  =  0R )
108, 9ax-mp 5 . . . . . 6  |-  ( -1R 
.R  0R )  =  0R
117, 10eqtri 2158 . . . . 5  |-  ( -1R 
.R  ( 0R  .R  0R ) )  =  0R
1211oveq2i 5778 . . . 4  |-  ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) )  =  ( ( A  .R  B
)  +R  0R )
13 mulclsr 7555 . . . . 5  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  R. )
14 0idsr 7568 . . . . 5  |-  ( ( A  .R  B )  e.  R.  ->  (
( A  .R  B
)  +R  0R )  =  ( A  .R  B ) )
1513, 14syl 14 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( A  .R  B )  +R  0R )  =  ( A  .R  B ) )
1612, 15syl5eq 2182 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) )  =  ( A  .R  B
) )
17 mulcomsrg 7558 . . . . . . 7  |-  ( ( 0R  e.  R.  /\  B  e.  R. )  ->  ( 0R  .R  B
)  =  ( B  .R  0R ) )
181, 17mpan 420 . . . . . 6  |-  ( B  e.  R.  ->  ( 0R  .R  B )  =  ( B  .R  0R ) )
19 00sr 7570 . . . . . 6  |-  ( B  e.  R.  ->  ( B  .R  0R )  =  0R )
2018, 19eqtrd 2170 . . . . 5  |-  ( B  e.  R.  ->  ( 0R  .R  B )  =  0R )
21 00sr 7570 . . . . 5  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
2220, 21oveqan12rd 5787 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )  =  ( 0R  +R  0R ) )
23 0idsr 7568 . . . . 5  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
241, 23ax-mp 5 . . . 4  |-  ( 0R 
+R  0R )  =  0R
2522, 24syl6eq 2186 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )  =  0R )
2616, 25opeq12d 3708 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  -> 
<. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )
>.  =  <. ( A  .R  B ) ,  0R >. )
274, 26eqtrd 2170 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   <.cop 3525  (class class class)co 5767   R.cnr 7098   0Rc0r 7099   -1Rcm1r 7101    +R cplr 7102    .R cmr 7103    x. cmul 7618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-i1p 7268  df-iplp 7269  df-imp 7270  df-enr 7527  df-nr 7528  df-plr 7529  df-mr 7530  df-0r 7532  df-m1r 7534  df-c 7619  df-mul 7625
This theorem is referenced by:  recidpirq  7659  axmulrcl  7668  ax1rid  7678  axprecex  7681  axpre-mulgt0  7688  axpre-mulext  7689
  Copyright terms: Public domain W3C validator