ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulresr Unicode version

Theorem mulresr 7800
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
Assertion
Ref Expression
mulresr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )

Proof of Theorem mulresr
StepHypRef Expression
1 0r 7712 . . 3  |-  0R  e.  R.
2 mulcnsr 7797 . . . 4  |-  ( ( ( A  e.  R.  /\  0R  e.  R. )  /\  ( B  e.  R.  /\  0R  e.  R. )
)  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) ) >. )
32an4s 583 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( 0R  e.  R.  /\  0R  e.  R. )
)  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) ) >. )
41, 1, 3mpanr12 437 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. (
( A  .R  B
)  +R  ( -1R 
.R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )
>. )
5 00sr 7731 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 5 . . . . . . 7  |-  ( 0R 
.R  0R )  =  0R
76oveq2i 5864 . . . . . 6  |-  ( -1R 
.R  ( 0R  .R  0R ) )  =  ( -1R  .R  0R )
8 m1r 7714 . . . . . . 7  |-  -1R  e.  R.
9 00sr 7731 . . . . . . 7  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  0R )  =  0R )
108, 9ax-mp 5 . . . . . 6  |-  ( -1R 
.R  0R )  =  0R
117, 10eqtri 2191 . . . . 5  |-  ( -1R 
.R  ( 0R  .R  0R ) )  =  0R
1211oveq2i 5864 . . . 4  |-  ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) )  =  ( ( A  .R  B
)  +R  0R )
13 mulclsr 7716 . . . . 5  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  R. )
14 0idsr 7729 . . . . 5  |-  ( ( A  .R  B )  e.  R.  ->  (
( A  .R  B
)  +R  0R )  =  ( A  .R  B ) )
1513, 14syl 14 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( A  .R  B )  +R  0R )  =  ( A  .R  B ) )
1612, 15eqtrid 2215 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) )  =  ( A  .R  B
) )
17 mulcomsrg 7719 . . . . . . 7  |-  ( ( 0R  e.  R.  /\  B  e.  R. )  ->  ( 0R  .R  B
)  =  ( B  .R  0R ) )
181, 17mpan 422 . . . . . 6  |-  ( B  e.  R.  ->  ( 0R  .R  B )  =  ( B  .R  0R ) )
19 00sr 7731 . . . . . 6  |-  ( B  e.  R.  ->  ( B  .R  0R )  =  0R )
2018, 19eqtrd 2203 . . . . 5  |-  ( B  e.  R.  ->  ( 0R  .R  B )  =  0R )
21 00sr 7731 . . . . 5  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
2220, 21oveqan12rd 5873 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )  =  ( 0R  +R  0R ) )
23 0idsr 7729 . . . . 5  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
241, 23ax-mp 5 . . . 4  |-  ( 0R 
+R  0R )  =  0R
2522, 24eqtrdi 2219 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )  =  0R )
2616, 25opeq12d 3773 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  -> 
<. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )
>.  =  <. ( A  .R  B ) ,  0R >. )
274, 26eqtrd 2203 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3586  (class class class)co 5853   R.cnr 7259   0Rc0r 7260   -1Rcm1r 7262    +R cplr 7263    .R cmr 7264    x. cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-0r 7693  df-m1r 7695  df-c 7780  df-mul 7786
This theorem is referenced by:  recidpirq  7820  axmulrcl  7829  ax1rid  7839  axprecex  7842  axpre-mulgt0  7849  axpre-mulext  7850
  Copyright terms: Public domain W3C validator