ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recdivap Unicode version

Theorem recdivap 8826
Description: The reciprocal of a ratio. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
recdivap  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( 1  / 
( A  /  B
) )  =  ( B  /  A ) )

Proof of Theorem recdivap
StepHypRef Expression
1 1div1e1 8812 . . . 4  |-  ( 1  /  1 )  =  1
21oveq1i 5977 . . 3  |-  ( ( 1  /  1 )  /  ( A  /  B ) )  =  ( 1  /  ( A  /  B ) )
3 ax-1cn 8053 . . . 4  |-  1  e.  CC
4 1ap0 8698 . . . . 5  |-  1 #  0
53, 4pm3.2i 272 . . . 4  |-  ( 1  e.  CC  /\  1 #  0 )
6 divdivdivap 8821 . . . 4  |-  ( ( ( 1  e.  CC  /\  ( 1  e.  CC  /\  1 #  0 ) )  /\  ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) ) )  ->  ( ( 1  /  1 )  / 
( A  /  B
) )  =  ( ( 1  x.  B
)  /  ( 1  x.  A ) ) )
73, 5, 6mpanl12 436 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  /  1 )  / 
( A  /  B
) )  =  ( ( 1  x.  B
)  /  ( 1  x.  A ) ) )
82, 7eqtr3id 2254 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( 1  / 
( A  /  B
) )  =  ( ( 1  x.  B
)  /  ( 1  x.  A ) ) )
9 mullid 8105 . . . 4  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
10 mullid 8105 . . . 4  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
119, 10oveqan12rd 5987 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  B )  /  (
1  x.  A ) )  =  ( B  /  A ) )
1211ad2ant2r 509 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  x.  B )  / 
( 1  x.  A
) )  =  ( B  /  A ) )
138, 12eqtrd 2240 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( 1  / 
( A  /  B
) )  =  ( B  /  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961    x. cmul 7965   # cap 8689    / cdiv 8780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781
This theorem is referenced by:  divcanap6  8827  recdivapd  8915
  Copyright terms: Public domain W3C validator