ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioomnf Unicode version

Theorem elioomnf 9386
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioomnf  |-  ( A  e.  RR*  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\  B  < 
A ) ) )

Proof of Theorem elioomnf
StepHypRef Expression
1 mnfxr 7544 . . 3  |- -oo  e.  RR*
2 elioo2 9339 . . 3  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\ -oo  <  B  /\  B  <  A
) ) )
31, 2mpan 415 . 2  |-  ( A  e.  RR*  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\ -oo  <  B  /\  B  <  A
) ) )
4 an32 529 . . 3  |-  ( ( ( B  e.  RR  /\ -oo  <  B )  /\  B  <  A )  <->  ( ( B  e.  RR  /\  B  <  A )  /\ -oo  <  B ) )
5 df-3an 926 . . 3  |-  ( ( B  e.  RR  /\ -oo 
<  B  /\  B  < 
A )  <->  ( ( B  e.  RR  /\ -oo  <  B )  /\  B  <  A ) )
6 mnflt 9253 . . . . 5  |-  ( B  e.  RR  -> -oo  <  B )
76adantr 270 . . . 4  |-  ( ( B  e.  RR  /\  B  <  A )  -> -oo  <  B )
87pm4.71i 383 . . 3  |-  ( ( B  e.  RR  /\  B  <  A )  <->  ( ( B  e.  RR  /\  B  <  A )  /\ -oo  <  B ) )
94, 5, 83bitr4i 210 . 2  |-  ( ( B  e.  RR  /\ -oo 
<  B  /\  B  < 
A )  <->  ( B  e.  RR  /\  B  < 
A ) )
103, 9syl6bb 194 1  |-  ( A  e.  RR*  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\  B  < 
A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    e. wcel 1438   class class class wbr 3845  (class class class)co 5652   RRcr 7349   -oocmnf 7520   RR*cxr 7521    < clt 7522   (,)cioo 9306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-ioo 9310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator