ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrp2 Unicode version

Theorem dfrp2 10199
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.)
Assertion
Ref Expression
dfrp2  |-  RR+  =  ( 0 (,) +oo )

Proof of Theorem dfrp2
StepHypRef Expression
1 ltpnf 9716 . . . . . 6  |-  ( x  e.  RR  ->  x  < +oo )
21adantr 274 . . . . 5  |-  ( ( x  e.  RR  /\  0  <  x )  ->  x  < +oo )
32pm4.71i 389 . . . 4  |-  ( ( x  e.  RR  /\  0  <  x )  <->  ( (
x  e.  RR  /\  0  <  x )  /\  x  < +oo ) )
4 df-3an 970 . . . 4  |-  ( ( x  e.  RR  /\  0  <  x  /\  x  < +oo )  <->  ( (
x  e.  RR  /\  0  <  x )  /\  x  < +oo ) )
53, 4bitr4i 186 . . 3  |-  ( ( x  e.  RR  /\  0  <  x )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) )
6 elrp 9591 . . 3  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
7 0xr 7945 . . . 4  |-  0  e.  RR*
8 pnfxr 7951 . . . 4  |- +oo  e.  RR*
9 elioo2 9857 . . . 4  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
x  e.  ( 0 (,) +oo )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) ) )
107, 8, 9mp2an 423 . . 3  |-  ( x  e.  ( 0 (,) +oo )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) )
115, 6, 103bitr4i 211 . 2  |-  ( x  e.  RR+  <->  x  e.  (
0 (,) +oo )
)
1211eqriv 2162 1  |-  RR+  =  ( 0 (,) +oo )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753   +oocpnf 7930   RR*cxr 7932    < clt 7933   RR+crp 9589   (,)cioo 9824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-rp 9590  df-ioo 9828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator