ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrp2 Unicode version

Theorem dfrp2 10483
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.)
Assertion
Ref Expression
dfrp2  |-  RR+  =  ( 0 (,) +oo )

Proof of Theorem dfrp2
StepHypRef Expression
1 ltpnf 9976 . . . . . 6  |-  ( x  e.  RR  ->  x  < +oo )
21adantr 276 . . . . 5  |-  ( ( x  e.  RR  /\  0  <  x )  ->  x  < +oo )
32pm4.71i 391 . . . 4  |-  ( ( x  e.  RR  /\  0  <  x )  <->  ( (
x  e.  RR  /\  0  <  x )  /\  x  < +oo ) )
4 df-3an 1004 . . . 4  |-  ( ( x  e.  RR  /\  0  <  x  /\  x  < +oo )  <->  ( (
x  e.  RR  /\  0  <  x )  /\  x  < +oo ) )
53, 4bitr4i 187 . . 3  |-  ( ( x  e.  RR  /\  0  <  x )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) )
6 elrp 9851 . . 3  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
7 0xr 8193 . . . 4  |-  0  e.  RR*
8 pnfxr 8199 . . . 4  |- +oo  e.  RR*
9 elioo2 10117 . . . 4  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
x  e.  ( 0 (,) +oo )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) ) )
107, 8, 9mp2an 426 . . 3  |-  ( x  e.  ( 0 (,) +oo )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) )
115, 6, 103bitr4i 212 . 2  |-  ( x  e.  RR+  <->  x  e.  (
0 (,) +oo )
)
1211eqriv 2226 1  |-  RR+  =  ( 0 (,) +oo )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   +oocpnf 8178   RR*cxr 8180    < clt 8181   RR+crp 9849   (,)cioo 10084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-rp 9850  df-ioo 10088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator