ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrp2 Unicode version

Theorem dfrp2 10326
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.)
Assertion
Ref Expression
dfrp2  |-  RR+  =  ( 0 (,) +oo )

Proof of Theorem dfrp2
StepHypRef Expression
1 ltpnf 9840 . . . . . 6  |-  ( x  e.  RR  ->  x  < +oo )
21adantr 276 . . . . 5  |-  ( ( x  e.  RR  /\  0  <  x )  ->  x  < +oo )
32pm4.71i 391 . . . 4  |-  ( ( x  e.  RR  /\  0  <  x )  <->  ( (
x  e.  RR  /\  0  <  x )  /\  x  < +oo ) )
4 df-3an 982 . . . 4  |-  ( ( x  e.  RR  /\  0  <  x  /\  x  < +oo )  <->  ( (
x  e.  RR  /\  0  <  x )  /\  x  < +oo ) )
53, 4bitr4i 187 . . 3  |-  ( ( x  e.  RR  /\  0  <  x )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) )
6 elrp 9715 . . 3  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
7 0xr 8060 . . . 4  |-  0  e.  RR*
8 pnfxr 8066 . . . 4  |- +oo  e.  RR*
9 elioo2 9981 . . . 4  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  (
x  e.  ( 0 (,) +oo )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) ) )
107, 8, 9mp2an 426 . . 3  |-  ( x  e.  ( 0 (,) +oo )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  < +oo ) )
115, 6, 103bitr4i 212 . 2  |-  ( x  e.  RR+  <->  x  e.  (
0 (,) +oo )
)
1211eqriv 2190 1  |-  RR+  =  ( 0 (,) +oo )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5914   RRcr 7865   0cc0 7866   +oocpnf 8045   RR*cxr 8047    < clt 8048   RR+crp 9713   (,)cioo 9948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4567  ax-cnex 7957  ax-resscn 7958  ax-1re 7960  ax-addrcl 7963  ax-rnegex 7975  ax-pre-ltirr 7978  ax-pre-ltwlin 7979  ax-pre-lttrn 7980
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4322  df-po 4325  df-iso 4326  df-xp 4663  df-rel 4664  df-cnv 4665  df-co 4666  df-dm 4667  df-iota 5211  df-fun 5252  df-fv 5258  df-ov 5917  df-oprab 5918  df-mpo 5919  df-pnf 8050  df-mnf 8051  df-xr 8052  df-ltxr 8053  df-le 8054  df-rp 9714  df-ioo 9952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator