ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreznegel Unicode version

Theorem eqreznegel 9688
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel  |-  ( A 
C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
Distinct variable group:    z, A

Proof of Theorem eqreznegel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssel 3177 . . . . . . . 8  |-  ( A 
C_  ZZ  ->  ( -u w  e.  A  ->  -u w  e.  ZZ )
)
2 recn 8012 . . . . . . . . 9  |-  ( w  e.  RR  ->  w  e.  CC )
3 negid 8273 . . . . . . . . . . . 12  |-  ( w  e.  CC  ->  (
w  +  -u w
)  =  0 )
4 0z 9337 . . . . . . . . . . . 12  |-  0  e.  ZZ
53, 4eqeltrdi 2287 . . . . . . . . . . 11  |-  ( w  e.  CC  ->  (
w  +  -u w
)  e.  ZZ )
65pm4.71i 391 . . . . . . . . . 10  |-  ( w  e.  CC  <->  ( w  e.  CC  /\  ( w  +  -u w )  e.  ZZ ) )
7 zrevaddcl 9376 . . . . . . . . . 10  |-  ( -u w  e.  ZZ  ->  ( ( w  e.  CC  /\  ( w  +  -u w )  e.  ZZ ) 
<->  w  e.  ZZ ) )
86, 7bitrid 192 . . . . . . . . 9  |-  ( -u w  e.  ZZ  ->  ( w  e.  CC  <->  w  e.  ZZ ) )
92, 8imbitrid 154 . . . . . . . 8  |-  ( -u w  e.  ZZ  ->  ( w  e.  RR  ->  w  e.  ZZ ) )
101, 9syl6 33 . . . . . . 7  |-  ( A 
C_  ZZ  ->  ( -u w  e.  A  ->  ( w  e.  RR  ->  w  e.  ZZ ) ) )
1110com23 78 . . . . . 6  |-  ( A 
C_  ZZ  ->  ( w  e.  RR  ->  ( -u w  e.  A  ->  w  e.  ZZ )
) )
1211impd 254 . . . . 5  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  w  e.  ZZ ) )
13 simpr 110 . . . . . 6  |-  ( ( w  e.  RR  /\  -u w  e.  A )  ->  -u w  e.  A
)
1413a1i 9 . . . . 5  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  -u w  e.  A
) )
1512, 14jcad 307 . . . 4  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  ( w  e.  ZZ  /\  -u w  e.  A ) ) )
16 zre 9330 . . . . 5  |-  ( w  e.  ZZ  ->  w  e.  RR )
1716anim1i 340 . . . 4  |-  ( ( w  e.  ZZ  /\  -u w  e.  A )  ->  ( w  e.  RR  /\  -u w  e.  A ) )
1815, 17impbid1 142 . . 3  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  <-> 
( w  e.  ZZ  /\  -u w  e.  A
) ) )
19 negeq 8219 . . . . 5  |-  ( z  =  w  ->  -u z  =  -u w )
2019eleq1d 2265 . . . 4  |-  ( z  =  w  ->  ( -u z  e.  A  <->  -u w  e.  A ) )
2120elrab 2920 . . 3  |-  ( w  e.  { z  e.  RR  |  -u z  e.  A }  <->  ( w  e.  RR  /\  -u w  e.  A ) )
2220elrab 2920 . . 3  |-  ( w  e.  { z  e.  ZZ  |  -u z  e.  A }  <->  ( w  e.  ZZ  /\  -u w  e.  A ) )
2318, 21, 223bitr4g 223 . 2  |-  ( A 
C_  ZZ  ->  ( w  e.  { z  e.  RR  |  -u z  e.  A }  <->  w  e.  { z  e.  ZZ  |  -u z  e.  A }
) )
2423eqrdv 2194 1  |-  ( A 
C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {crab 2479    C_ wss 3157  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879    + caddc 7882   -ucneg 8198   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator