ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreznegel Unicode version

Theorem eqreznegel 9616
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel  |-  ( A 
C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
Distinct variable group:    z, A

Proof of Theorem eqreznegel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssel 3151 . . . . . . . 8  |-  ( A 
C_  ZZ  ->  ( -u w  e.  A  ->  -u w  e.  ZZ )
)
2 recn 7946 . . . . . . . . 9  |-  ( w  e.  RR  ->  w  e.  CC )
3 negid 8206 . . . . . . . . . . . 12  |-  ( w  e.  CC  ->  (
w  +  -u w
)  =  0 )
4 0z 9266 . . . . . . . . . . . 12  |-  0  e.  ZZ
53, 4eqeltrdi 2268 . . . . . . . . . . 11  |-  ( w  e.  CC  ->  (
w  +  -u w
)  e.  ZZ )
65pm4.71i 391 . . . . . . . . . 10  |-  ( w  e.  CC  <->  ( w  e.  CC  /\  ( w  +  -u w )  e.  ZZ ) )
7 zrevaddcl 9305 . . . . . . . . . 10  |-  ( -u w  e.  ZZ  ->  ( ( w  e.  CC  /\  ( w  +  -u w )  e.  ZZ ) 
<->  w  e.  ZZ ) )
86, 7bitrid 192 . . . . . . . . 9  |-  ( -u w  e.  ZZ  ->  ( w  e.  CC  <->  w  e.  ZZ ) )
92, 8imbitrid 154 . . . . . . . 8  |-  ( -u w  e.  ZZ  ->  ( w  e.  RR  ->  w  e.  ZZ ) )
101, 9syl6 33 . . . . . . 7  |-  ( A 
C_  ZZ  ->  ( -u w  e.  A  ->  ( w  e.  RR  ->  w  e.  ZZ ) ) )
1110com23 78 . . . . . 6  |-  ( A 
C_  ZZ  ->  ( w  e.  RR  ->  ( -u w  e.  A  ->  w  e.  ZZ )
) )
1211impd 254 . . . . 5  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  w  e.  ZZ ) )
13 simpr 110 . . . . . 6  |-  ( ( w  e.  RR  /\  -u w  e.  A )  ->  -u w  e.  A
)
1413a1i 9 . . . . 5  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  -u w  e.  A
) )
1512, 14jcad 307 . . . 4  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  ( w  e.  ZZ  /\  -u w  e.  A ) ) )
16 zre 9259 . . . . 5  |-  ( w  e.  ZZ  ->  w  e.  RR )
1716anim1i 340 . . . 4  |-  ( ( w  e.  ZZ  /\  -u w  e.  A )  ->  ( w  e.  RR  /\  -u w  e.  A ) )
1815, 17impbid1 142 . . 3  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  <-> 
( w  e.  ZZ  /\  -u w  e.  A
) ) )
19 negeq 8152 . . . . 5  |-  ( z  =  w  ->  -u z  =  -u w )
2019eleq1d 2246 . . . 4  |-  ( z  =  w  ->  ( -u z  e.  A  <->  -u w  e.  A ) )
2120elrab 2895 . . 3  |-  ( w  e.  { z  e.  RR  |  -u z  e.  A }  <->  ( w  e.  RR  /\  -u w  e.  A ) )
2220elrab 2895 . . 3  |-  ( w  e.  { z  e.  ZZ  |  -u z  e.  A }  <->  ( w  e.  ZZ  /\  -u w  e.  A ) )
2318, 21, 223bitr4g 223 . 2  |-  ( A 
C_  ZZ  ->  ( w  e.  { z  e.  RR  |  -u z  e.  A }  <->  w  e.  { z  e.  ZZ  |  -u z  e.  A }
) )
2423eqrdv 2175 1  |-  ( A 
C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {crab 2459    C_ wss 3131  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    + caddc 7816   -ucneg 8131   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator