ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadmrn Unicode version

Theorem imadmrn 5015
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn  |-  ( A
" dom  A )  =  ran  A

Proof of Theorem imadmrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . . . 7  |-  x  e. 
_V
2 vex 2763 . . . . . . 7  |-  y  e. 
_V
31, 2opeldm 4865 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
43pm4.71i 391 . . . . 5  |-  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  /\  x  e.  dom  A ) )
5 ancom 266 . . . . 5  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  dom  A )  <->  ( x  e.  dom  A  /\  <. x ,  y >.  e.  A
) )
64, 5bitr2i 185 . . . 4  |-  ( ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A )  <->  <. x ,  y >.  e.  A
)
76exbii 1616 . . 3  |-  ( E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
)  <->  E. x <. x ,  y >.  e.  A
)
87abbii 2309 . 2  |-  { y  |  E. x ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A ) }  =  { y  |  E. x <. x ,  y >.  e.  A }
9 dfima3 5008 . 2  |-  ( A
" dom  A )  =  { y  |  E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
) }
10 dfrn3 4851 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
118, 9, 103eqtr4i 2224 1  |-  ( A
" dom  A )  =  ran  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   <.cop 3621   dom cdm 4659   ran crn 4660   "cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  cnvimarndm  5029  foima  5481  fimadmfo  5485  f1imacnv  5517  fsn2  5732  resfunexg  5779  funiunfvdm  5806  fnexALT  6163  uniqs2  6649  mapsn  6744  phplem4  6911  phplem4on  6923  retopbas  14691
  Copyright terms: Public domain W3C validator