ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadmrn Unicode version

Theorem imadmrn 4849
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn  |-  ( A
" dom  A )  =  ran  A

Proof of Theorem imadmrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2660 . . . . . . 7  |-  x  e. 
_V
2 vex 2660 . . . . . . 7  |-  y  e. 
_V
31, 2opeldm 4702 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
43pm4.71i 386 . . . . 5  |-  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  /\  x  e.  dom  A ) )
5 ancom 264 . . . . 5  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  dom  A )  <->  ( x  e.  dom  A  /\  <. x ,  y >.  e.  A
) )
64, 5bitr2i 184 . . . 4  |-  ( ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A )  <->  <. x ,  y >.  e.  A
)
76exbii 1567 . . 3  |-  ( E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
)  <->  E. x <. x ,  y >.  e.  A
)
87abbii 2230 . 2  |-  { y  |  E. x ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A ) }  =  { y  |  E. x <. x ,  y >.  e.  A }
9 dfima3 4842 . 2  |-  ( A
" dom  A )  =  { y  |  E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
) }
10 dfrn3 4688 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
118, 9, 103eqtr4i 2145 1  |-  ( A
" dom  A )  =  ran  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314   E.wex 1451    e. wcel 1463   {cab 2101   <.cop 3496   dom cdm 4499   ran crn 4500   "cima 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-xp 4505  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512
This theorem is referenced by:  cnvimarndm  4861  foima  5308  f1imacnv  5340  fsn2  5548  resfunexg  5595  funiunfvdm  5618  fnexALT  5965  uniqs2  6443  mapsn  6538  phplem4  6702  phplem4on  6714  retopbas  12512
  Copyright terms: Public domain W3C validator