ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxrge0 Unicode version

Theorem elxrge0 9712
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
elxrge0  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  e. 
RR*  /\  0  <_  A ) )

Proof of Theorem elxrge0
StepHypRef Expression
1 df-3an 947 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A  /\  A  <_ +oo )  <->  ( ( A  e.  RR*  /\  0  <_  A )  /\  A  <_ +oo ) )
2 0xr 7776 . . 3  |-  0  e.  RR*
3 pnfxr 7782 . . 3  |- +oo  e.  RR*
4 elicc1 9658 . . 3  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  e.  ( 0 [,] +oo )  <->  ( A  e.  RR*  /\  0  <_  A  /\  A  <_ +oo )
) )
52, 3, 4mp2an 420 . 2  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  e. 
RR*  /\  0  <_  A  /\  A  <_ +oo )
)
6 pnfge 9526 . . . 4  |-  ( A  e.  RR*  ->  A  <_ +oo )
76adantr 272 . . 3  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  <_ +oo )
87pm4.71i 386 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A )  <->  ( ( A  e.  RR*  /\  0  <_  A )  /\  A  <_ +oo ) )
91, 5, 83bitr4i 211 1  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  e. 
RR*  /\  0  <_  A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 945    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   0cc0 7584   +oocpnf 7761   RR*cxr 7763    <_ cle 7765   [,]cicc 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1re 7678  ax-addrcl 7681  ax-rnegex 7693
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-icc 9629
This theorem is referenced by:  0e0iccpnf  9714  ge0xaddcl  9717  psmetxrge0  12407  isxmet2d  12423  comet  12574  bdxmet  12576
  Copyright terms: Public domain W3C validator