ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxrge0 Unicode version

Theorem elxrge0 9291
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
elxrge0  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  e. 
RR*  /\  0  <_  A ) )

Proof of Theorem elxrge0
StepHypRef Expression
1 df-3an 922 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A  /\  A  <_ +oo )  <->  ( ( A  e.  RR*  /\  0  <_  A )  /\  A  <_ +oo ) )
2 0xr 7437 . . 3  |-  0  e.  RR*
3 pnfxr 7443 . . 3  |- +oo  e.  RR*
4 elicc1 9237 . . 3  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  e.  ( 0 [,] +oo )  <->  ( A  e.  RR*  /\  0  <_  A  /\  A  <_ +oo )
) )
52, 3, 4mp2an 417 . 2  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  e. 
RR*  /\  0  <_  A  /\  A  <_ +oo )
)
6 pnfge 9154 . . . 4  |-  ( A  e.  RR*  ->  A  <_ +oo )
76adantr 270 . . 3  |-  ( ( A  e.  RR*  /\  0  <_  A )  ->  A  <_ +oo )
87pm4.71i 383 . 2  |-  ( ( A  e.  RR*  /\  0  <_  A )  <->  ( ( A  e.  RR*  /\  0  <_  A )  /\  A  <_ +oo ) )
91, 5, 83bitr4i 210 1  |-  ( A  e.  ( 0 [,] +oo )  <->  ( A  e. 
RR*  /\  0  <_  A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    /\ w3a 920    e. wcel 1434   class class class wbr 3811  (class class class)co 5591   0cc0 7253   +oocpnf 7422   RR*cxr 7424    <_ cle 7426   [,]cicc 9204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1re 7342  ax-addrcl 7345  ax-rnegex 7357
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-icc 9208
This theorem is referenced by:  0e0iccpnf  9293
  Copyright terms: Public domain W3C validator