| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poirr | Unicode version | ||
| Description: A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.) |
| Ref | Expression |
|---|---|
| poirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 983 |
. . 3
| |
| 2 | anabs1 572 |
. . 3
| |
| 3 | anidm 396 |
. . 3
| |
| 4 | 1, 2, 3 | 3bitrri 207 |
. 2
|
| 5 | pocl 4350 |
. . . 4
| |
| 6 | 5 | imp 124 |
. . 3
|
| 7 | 6 | simpld 112 |
. 2
|
| 8 | 4, 7 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-po 4343 |
| This theorem is referenced by: po2nr 4356 pofun 4359 sonr 4364 poirr2 5075 poxp 6318 swoer 6648 tridc 6996 fimax2gtrilemstep 6997 |
| Copyright terms: Public domain | W3C validator |