ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poirr Unicode version

Theorem poirr 4134
Description: A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poirr  |-  ( ( R  Po  A  /\  B  e.  A )  ->  -.  B R B )

Proof of Theorem poirr
StepHypRef Expression
1 df-3an 926 . . 3  |-  ( ( B  e.  A  /\  B  e.  A  /\  B  e.  A )  <->  ( ( B  e.  A  /\  B  e.  A
)  /\  B  e.  A ) )
2 anabs1 539 . . 3  |-  ( ( ( B  e.  A  /\  B  e.  A
)  /\  B  e.  A )  <->  ( B  e.  A  /\  B  e.  A ) )
3 anidm 388 . . 3  |-  ( ( B  e.  A  /\  B  e.  A )  <->  B  e.  A )
41, 2, 33bitrri 205 . 2  |-  ( B  e.  A  <->  ( B  e.  A  /\  B  e.  A  /\  B  e.  A ) )
5 pocl 4130 . . . 4  |-  ( R  Po  A  ->  (
( B  e.  A  /\  B  e.  A  /\  B  e.  A
)  ->  ( -.  B R B  /\  (
( B R B  /\  B R B )  ->  B R B ) ) ) )
65imp 122 . . 3  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  B  e.  A  /\  B  e.  A
) )  ->  ( -.  B R B  /\  ( ( B R B  /\  B R B )  ->  B R B ) ) )
76simpld 110 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  B  e.  A  /\  B  e.  A
) )  ->  -.  B R B )
84, 7sylan2b 281 1  |-  ( ( R  Po  A  /\  B  e.  A )  ->  -.  B R B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    /\ w3a 924    e. wcel 1438   class class class wbr 3845    Po wpo 4121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-un 3003  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-po 4123
This theorem is referenced by:  po2nr  4136  pofun  4139  sonr  4144  poirr2  4824  poxp  5997  swoer  6320  tridc  6615  fimax2gtrilemstep  6616
  Copyright terms: Public domain W3C validator