| Step | Hyp | Ref
| Expression |
| 1 | | simprr 531 |
. . . . 5
⊢ ((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) →
¬ 𝐴 =
{∅}) |
| 2 | | simpll 527 |
. . . . . . . 8
⊢ (((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ {∅}) |
| 3 | | simpl 109 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) →
𝐴 ⊆
{∅}) |
| 4 | 3 | sselda 3183 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {∅}) |
| 5 | | elsni 3640 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) |
| 6 | 4, 5 | syl 14 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) ∧ 𝑥 ∈ 𝐴) → 𝑥 = ∅) |
| 7 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 8 | 6, 7 | eqeltrrd 2274 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) ∧ 𝑥 ∈ 𝐴) → ∅ ∈ 𝐴) |
| 9 | 8 | snssd 3767 |
. . . . . . . 8
⊢ (((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) ∧ 𝑥 ∈ 𝐴) → {∅} ⊆ 𝐴) |
| 10 | 2, 9 | eqssd 3200 |
. . . . . . 7
⊢ (((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) ∧ 𝑥 ∈ 𝐴) → 𝐴 = {∅}) |
| 11 | 10 | ex 115 |
. . . . . 6
⊢ ((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) →
(𝑥 ∈ 𝐴 → 𝐴 = {∅})) |
| 12 | 11 | exlimdv 1833 |
. . . . 5
⊢ ((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) →
(∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = {∅})) |
| 13 | 1, 12 | mtod 664 |
. . . 4
⊢ ((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) →
¬ ∃𝑥 𝑥 ∈ 𝐴) |
| 14 | | notm0 3471 |
. . . 4
⊢ (¬
∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| 15 | 13, 14 | sylib 122 |
. . 3
⊢ ((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) →
𝐴 =
∅) |
| 16 | | simprl 529 |
. . 3
⊢ ((𝐴 ⊆ {∅} ∧ (¬
𝐴 = ∅ ∧ ¬
𝐴 = {∅})) →
¬ 𝐴 =
∅) |
| 17 | 15, 16 | pm2.65da 662 |
. 2
⊢ (𝐴 ⊆ {∅} → ¬
(¬ 𝐴 = ∅ ∧
¬ 𝐴 =
{∅})) |
| 18 | | ioran 753 |
. 2
⊢ (¬
(𝐴 = ∅ ∨ 𝐴 = {∅}) ↔ (¬
𝐴 = ∅ ∧ ¬
𝐴 =
{∅})) |
| 19 | 17, 18 | sylnibr 678 |
1
⊢ (𝐴 ⊆ {∅} → ¬
¬ (𝐴 = ∅ ∨
𝐴 =
{∅})) |