Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwtrufal GIF version

Theorem pwtrufal 15642
Description: A subset of the singleton {∅} cannot be anything other than or {∅}. Removing the double negation would change the meaning, as seen at exmid01 4231. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4229), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.)
Assertion
Ref Expression
pwtrufal (𝐴 ⊆ {∅} → ¬ ¬ (𝐴 = ∅ ∨ 𝐴 = {∅}))

Proof of Theorem pwtrufal
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprr 531 . . . . 5 ((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) → ¬ 𝐴 = {∅})
2 simpll 527 . . . . . . . 8 (((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) ∧ 𝑥𝐴) → 𝐴 ⊆ {∅})
3 simpl 109 . . . . . . . . . . . 12 ((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) → 𝐴 ⊆ {∅})
43sselda 3183 . . . . . . . . . . 11 (((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) ∧ 𝑥𝐴) → 𝑥 ∈ {∅})
5 elsni 3640 . . . . . . . . . . 11 (𝑥 ∈ {∅} → 𝑥 = ∅)
64, 5syl 14 . . . . . . . . . 10 (((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) ∧ 𝑥𝐴) → 𝑥 = ∅)
7 simpr 110 . . . . . . . . . 10 (((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) ∧ 𝑥𝐴) → 𝑥𝐴)
86, 7eqeltrrd 2274 . . . . . . . . 9 (((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) ∧ 𝑥𝐴) → ∅ ∈ 𝐴)
98snssd 3767 . . . . . . . 8 (((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) ∧ 𝑥𝐴) → {∅} ⊆ 𝐴)
102, 9eqssd 3200 . . . . . . 7 (((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) ∧ 𝑥𝐴) → 𝐴 = {∅})
1110ex 115 . . . . . 6 ((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) → (𝑥𝐴𝐴 = {∅}))
1211exlimdv 1833 . . . . 5 ((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) → (∃𝑥 𝑥𝐴𝐴 = {∅}))
131, 12mtod 664 . . . 4 ((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) → ¬ ∃𝑥 𝑥𝐴)
14 notm0 3471 . . . 4 (¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
1513, 14sylib 122 . . 3 ((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) → 𝐴 = ∅)
16 simprl 529 . . 3 ((𝐴 ⊆ {∅} ∧ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅})) → ¬ 𝐴 = ∅)
1715, 16pm2.65da 662 . 2 (𝐴 ⊆ {∅} → ¬ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅}))
18 ioran 753 . 2 (¬ (𝐴 = ∅ ∨ 𝐴 = {∅}) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐴 = {∅}))
1917, 18sylnibr 678 1 (𝐴 ⊆ {∅} → ¬ ¬ (𝐴 = ∅ ∨ 𝐴 = {∅}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wex 1506  wcel 2167  wss 3157  c0 3450  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628
This theorem is referenced by:  pwle2  15643
  Copyright terms: Public domain W3C validator