ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgcnp Unicode version

Theorem tgcnp 12378
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
tgcn.3  |-  ( ph  ->  K  =  ( topGen `  B ) )
tgcn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
tgcnp.5  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
tgcnp  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Distinct variable groups:    x, y, B   
x, F, y    x, J, y    x, K, y   
x, P, y    ph, x    x, X, y    x, Y, y
Allowed substitution hint:    ph( y)

Proof of Theorem tgcnp
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 tgcn.4 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 tgcnp.5 . . . 4  |-  ( ph  ->  P  e.  X )
4 iscnp 12368 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
51, 2, 3, 4syl3anc 1216 . . 3  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
6 tgcn.3 . . . . . . . . 9  |-  ( ph  ->  K  =  ( topGen `  B ) )
7 topontop 12181 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
82, 7syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
96, 8eqeltrrd 2217 . . . . . . . 8  |-  ( ph  ->  ( topGen `  B )  e.  Top )
10 tgclb 12234 . . . . . . . 8  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
119, 10sylibr 133 . . . . . . 7  |-  ( ph  ->  B  e.  TopBases )
12 bastg 12230 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1311, 12syl 14 . . . . . 6  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1413, 6sseqtrrd 3136 . . . . 5  |-  ( ph  ->  B  C_  K )
15 ssralv 3161 . . . . 5  |-  ( B 
C_  K  ->  ( A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
1614, 15syl 14 . . . 4  |-  ( ph  ->  ( A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
1716anim2d 335 . . 3  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
185, 17sylbid 149 . 2  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  ->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
196eleq2d 2209 . . . . . . 7  |-  ( ph  ->  ( z  e.  K  <->  z  e.  ( topGen `  B
) ) )
2019biimpa 294 . . . . . 6  |-  ( (
ph  /\  z  e.  K )  ->  z  e.  ( topGen `  B )
)
21 tg2 12229 . . . . . . . . 9  |-  ( ( z  e.  ( topGen `  B )  /\  ( F `  P )  e.  z )  ->  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )
22 r19.29 2569 . . . . . . . . . . 11  |-  ( ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. y  e.  B  ( ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  /\  ( ( F `  P )  e.  y  /\  y  C_  z
) ) )
23 sstr 3105 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F " x
)  C_  y  /\  y  C_  z )  -> 
( F " x
)  C_  z )
2423expcom 115 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  z  ->  (
( F " x
)  C_  y  ->  ( F " x ) 
C_  z ) )
2524anim2d 335 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  z  ->  (
( P  e.  x  /\  ( F " x
)  C_  y )  ->  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2625reximdv 2533 . . . . . . . . . . . . . . 15  |-  ( y 
C_  z  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2726com12 30 . . . . . . . . . . . . . 14  |-  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  -> 
( y  C_  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2827imim2i 12 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  y  ->  ( y 
C_  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
2928imp32 255 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3029rexlimivw 2545 . . . . . . . . . . 11  |-  ( E. y  e.  B  ( ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3122, 30syl 14 . . . . . . . . . 10  |-  ( ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3231expcom 115 . . . . . . . . 9  |-  ( E. y  e.  B  ( ( F `  P
)  e.  y  /\  y  C_  z )  -> 
( A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
3321, 32syl 14 . . . . . . . 8  |-  ( ( z  e.  ( topGen `  B )  /\  ( F `  P )  e.  z )  ->  ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) )
3433ex 114 . . . . . . 7  |-  ( z  e.  ( topGen `  B
)  ->  ( ( F `  P )  e.  z  ->  ( A. y  e.  B  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3534com23 78 . . . . . 6  |-  ( z  e.  ( topGen `  B
)  ->  ( A. y  e.  B  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3620, 35syl 14 . . . . 5  |-  ( (
ph  /\  z  e.  K )  ->  ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3736ralrimdva 2512 . . . 4  |-  ( ph  ->  ( A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  A. z  e.  K  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) ) )
3837anim2d 335 . . 3  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  ( F : X
--> Y  /\  A. z  e.  K  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) ) )
39 iscnp 12368 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. z  e.  K  ( ( F `
 P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) ) )
401, 2, 3, 39syl3anc 1216 . . 3  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. z  e.  K  ( ( F `  P
)  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) ) ) )
4138, 40sylibrd 168 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  F  e.  ( ( J  CnP  K
) `  P )
) )
4218, 41impbid 128 1  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   "cima 4542   -->wf 5119   ` cfv 5123  (class class class)co 5774   topGenctg 12135   Topctop 12164  TopOnctopon 12177   TopBasesctb 12209    CnP ccnp 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cnp 12358
This theorem is referenced by:  txcnp  12440  metcnp3  12680
  Copyright terms: Public domain W3C validator