Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgcnp | Unicode version |
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
tgcn.1 | TopOn |
tgcn.3 | |
tgcn.4 | TopOn |
tgcnp.5 |
Ref | Expression |
---|---|
tgcnp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcn.1 | . . . 4 TopOn | |
2 | tgcn.4 | . . . 4 TopOn | |
3 | tgcnp.5 | . . . 4 | |
4 | iscnp 12570 | . . . 4 TopOn TopOn | |
5 | 1, 2, 3, 4 | syl3anc 1220 | . . 3 |
6 | tgcn.3 | . . . . . . . . 9 | |
7 | topontop 12383 | . . . . . . . . . 10 TopOn | |
8 | 2, 7 | syl 14 | . . . . . . . . 9 |
9 | 6, 8 | eqeltrrd 2235 | . . . . . . . 8 |
10 | tgclb 12436 | . . . . . . . 8 | |
11 | 9, 10 | sylibr 133 | . . . . . . 7 |
12 | bastg 12432 | . . . . . . 7 | |
13 | 11, 12 | syl 14 | . . . . . 6 |
14 | 13, 6 | sseqtrrd 3167 | . . . . 5 |
15 | ssralv 3192 | . . . . 5 | |
16 | 14, 15 | syl 14 | . . . 4 |
17 | 16 | anim2d 335 | . . 3 |
18 | 5, 17 | sylbid 149 | . 2 |
19 | 6 | eleq2d 2227 | . . . . . . 7 |
20 | 19 | biimpa 294 | . . . . . 6 |
21 | tg2 12431 | . . . . . . . . 9 | |
22 | r19.29 2594 | . . . . . . . . . . 11 | |
23 | sstr 3136 | . . . . . . . . . . . . . . . . . 18 | |
24 | 23 | expcom 115 | . . . . . . . . . . . . . . . . 17 |
25 | 24 | anim2d 335 | . . . . . . . . . . . . . . . 16 |
26 | 25 | reximdv 2558 | . . . . . . . . . . . . . . 15 |
27 | 26 | com12 30 | . . . . . . . . . . . . . 14 |
28 | 27 | imim2i 12 | . . . . . . . . . . . . 13 |
29 | 28 | imp32 255 | . . . . . . . . . . . 12 |
30 | 29 | rexlimivw 2570 | . . . . . . . . . . 11 |
31 | 22, 30 | syl 14 | . . . . . . . . . 10 |
32 | 31 | expcom 115 | . . . . . . . . 9 |
33 | 21, 32 | syl 14 | . . . . . . . 8 |
34 | 33 | ex 114 | . . . . . . 7 |
35 | 34 | com23 78 | . . . . . 6 |
36 | 20, 35 | syl 14 | . . . . 5 |
37 | 36 | ralrimdva 2537 | . . . 4 |
38 | 37 | anim2d 335 | . . 3 |
39 | iscnp 12570 | . . . 4 TopOn TopOn | |
40 | 1, 2, 3, 39 | syl3anc 1220 | . . 3 |
41 | 38, 40 | sylibrd 168 | . 2 |
42 | 18, 41 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 wrex 2436 wss 3102 cima 4588 wf 5165 cfv 5169 (class class class)co 5821 ctg 12337 ctop 12366 TopOnctopon 12379 ctb 12411 ccnp 12557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-map 6592 df-topgen 12343 df-top 12367 df-topon 12380 df-bases 12412 df-cnp 12560 |
This theorem is referenced by: txcnp 12642 metcnp3 12882 |
Copyright terms: Public domain | W3C validator |