| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgcnp | Unicode version | ||
| Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgcn.1 |
|
| tgcn.3 |
|
| tgcn.4 |
|
| tgcnp.5 |
|
| Ref | Expression |
|---|---|
| tgcnp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcn.1 |
. . . 4
| |
| 2 | tgcn.4 |
. . . 4
| |
| 3 | tgcnp.5 |
. . . 4
| |
| 4 | iscnp 14873 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | syl3anc 1271 |
. . 3
|
| 6 | tgcn.3 |
. . . . . . . . 9
| |
| 7 | topontop 14688 |
. . . . . . . . . 10
| |
| 8 | 2, 7 | syl 14 |
. . . . . . . . 9
|
| 9 | 6, 8 | eqeltrrd 2307 |
. . . . . . . 8
|
| 10 | tgclb 14739 |
. . . . . . . 8
| |
| 11 | 9, 10 | sylibr 134 |
. . . . . . 7
|
| 12 | bastg 14735 |
. . . . . . 7
| |
| 13 | 11, 12 | syl 14 |
. . . . . 6
|
| 14 | 13, 6 | sseqtrrd 3263 |
. . . . 5
|
| 15 | ssralv 3288 |
. . . . 5
| |
| 16 | 14, 15 | syl 14 |
. . . 4
|
| 17 | 16 | anim2d 337 |
. . 3
|
| 18 | 5, 17 | sylbid 150 |
. 2
|
| 19 | 6 | eleq2d 2299 |
. . . . . . 7
|
| 20 | 19 | biimpa 296 |
. . . . . 6
|
| 21 | tg2 14734 |
. . . . . . . . 9
| |
| 22 | r19.29 2668 |
. . . . . . . . . . 11
| |
| 23 | sstr 3232 |
. . . . . . . . . . . . . . . . . 18
| |
| 24 | 23 | expcom 116 |
. . . . . . . . . . . . . . . . 17
|
| 25 | 24 | anim2d 337 |
. . . . . . . . . . . . . . . 16
|
| 26 | 25 | reximdv 2631 |
. . . . . . . . . . . . . . 15
|
| 27 | 26 | com12 30 |
. . . . . . . . . . . . . 14
|
| 28 | 27 | imim2i 12 |
. . . . . . . . . . . . 13
|
| 29 | 28 | imp32 257 |
. . . . . . . . . . . 12
|
| 30 | 29 | rexlimivw 2644 |
. . . . . . . . . . 11
|
| 31 | 22, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | 31 | expcom 116 |
. . . . . . . . 9
|
| 33 | 21, 32 | syl 14 |
. . . . . . . 8
|
| 34 | 33 | ex 115 |
. . . . . . 7
|
| 35 | 34 | com23 78 |
. . . . . 6
|
| 36 | 20, 35 | syl 14 |
. . . . 5
|
| 37 | 36 | ralrimdva 2610 |
. . . 4
|
| 38 | 37 | anim2d 337 |
. . 3
|
| 39 | iscnp 14873 |
. . . 4
| |
| 40 | 1, 2, 3, 39 | syl3anc 1271 |
. . 3
|
| 41 | 38, 40 | sylibrd 169 |
. 2
|
| 42 | 18, 41 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-topgen 13293 df-top 14672 df-topon 14685 df-bases 14717 df-cnp 14863 |
| This theorem is referenced by: txcnp 14945 metcnp3 15185 |
| Copyright terms: Public domain | W3C validator |