| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpt | Unicode version | ||
| Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 |
|
| Ref | Expression |
|---|---|
| fmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt.1 |
. . . 4
| |
| 2 | 1 | fnmpt 5402 |
. . 3
|
| 3 | 1 | rnmpt 4926 |
. . . 4
|
| 4 | r19.29 2643 |
. . . . . . 7
| |
| 5 | eleq1 2268 |
. . . . . . . . 9
| |
| 6 | 5 | biimparc 299 |
. . . . . . . 8
|
| 7 | 6 | rexlimivw 2619 |
. . . . . . 7
|
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | 9 | abssdv 3267 |
. . . 4
|
| 11 | 3, 10 | eqsstrid 3239 |
. . 3
|
| 12 | df-f 5275 |
. . 3
| |
| 13 | 2, 11, 12 | sylanbrc 417 |
. 2
|
| 14 | fimacnv 5709 |
. . . 4
| |
| 15 | 1 | mptpreima 5176 |
. . . 4
|
| 16 | 14, 15 | eqtr3di 2253 |
. . 3
|
| 17 | rabid2 2683 |
. . 3
| |
| 18 | 16, 17 | sylib 122 |
. 2
|
| 19 | 13, 18 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: f1ompt 5731 fmpti 5732 fvmptelcdm 5733 fmptd 5734 fmptdf 5737 rnmptss 5741 f1oresrab 5745 idref 5825 f1mpt 5840 f1stres 6245 f2ndres 6246 fmpox 6286 fmpoco 6302 iunon 6370 mptelixpg 6821 dom2lem 6863 uzf 9651 pcmptcl 12665 gsumfzmhm2 13680 upxp 14744 txdis1cn 14750 cnmpt11 14755 cnmpt21 14763 fsumcncntop 15039 cncfmpt1f 15070 mulcncflem 15079 mulcncf 15080 cnmptlimc 15146 sincn 15241 coscn 15242 lgseisenlem3 15549 |
| Copyright terms: Public domain | W3C validator |