ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt Unicode version

Theorem fmpt 5732
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fmpt.1  |-  F  =  ( x  e.  A  |->  C )
Assertion
Ref Expression
fmpt  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem fmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fmpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  C )
21fnmpt 5404 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  F  Fn  A )
31rnmpt 4927 . . . 4  |-  ran  F  =  { y  |  E. x  e.  A  y  =  C }
4 r19.29 2643 . . . . . . 7  |-  ( ( A. x  e.  A  C  e.  B  /\  E. x  e.  A  y  =  C )  ->  E. x  e.  A  ( C  e.  B  /\  y  =  C
) )
5 eleq1 2268 . . . . . . . . 9  |-  ( y  =  C  ->  (
y  e.  B  <->  C  e.  B ) )
65biimparc 299 . . . . . . . 8  |-  ( ( C  e.  B  /\  y  =  C )  ->  y  e.  B )
76rexlimivw 2619 . . . . . . 7  |-  ( E. x  e.  A  ( C  e.  B  /\  y  =  C )  ->  y  e.  B )
84, 7syl 14 . . . . . 6  |-  ( ( A. x  e.  A  C  e.  B  /\  E. x  e.  A  y  =  C )  -> 
y  e.  B )
98ex 115 . . . . 5  |-  ( A. x  e.  A  C  e.  B  ->  ( E. x  e.  A  y  =  C  ->  y  e.  B ) )
109abssdv 3267 . . . 4  |-  ( A. x  e.  A  C  e.  B  ->  { y  |  E. x  e.  A  y  =  C }  C_  B )
113, 10eqsstrid 3239 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  ran  F  C_  B )
12 df-f 5276 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
132, 11, 12sylanbrc 417 . 2  |-  ( A. x  e.  A  C  e.  B  ->  F : A
--> B )
14 fimacnv 5711 . . . 4  |-  ( F : A --> B  -> 
( `' F " B )  =  A )
151mptpreima 5177 . . . 4  |-  ( `' F " B )  =  { x  e.  A  |  C  e.  B }
1614, 15eqtr3di 2253 . . 3  |-  ( F : A --> B  ->  A  =  { x  e.  A  |  C  e.  B } )
17 rabid2 2683 . . 3  |-  ( A  =  { x  e.  A  |  C  e.  B }  <->  A. x  e.  A  C  e.  B )
1816, 17sylib 122 . 2  |-  ( F : A --> B  ->  A. x  e.  A  C  e.  B )
1913, 18impbii 126 1  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   {crab 2488    C_ wss 3166    |-> cmpt 4106   `'ccnv 4675   ran crn 4677   "cima 4679    Fn wfn 5267   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280
This theorem is referenced by:  f1ompt  5733  fmpti  5734  fvmptelcdm  5735  fmptd  5736  fmptdf  5739  rnmptss  5743  f1oresrab  5747  idref  5827  f1mpt  5842  f1stres  6247  f2ndres  6248  fmpox  6288  fmpoco  6304  iunon  6372  mptelixpg  6823  dom2lem  6865  uzf  9653  pcmptcl  12698  gsumfzmhm2  13713  upxp  14777  txdis1cn  14783  cnmpt11  14788  cnmpt21  14796  fsumcncntop  15072  cncfmpt1f  15103  mulcncflem  15112  mulcncf  15113  cnmptlimc  15179  sincn  15274  coscn  15275  lgseisenlem3  15582
  Copyright terms: Public domain W3C validator