ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt Unicode version

Theorem fmpt 5730
Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fmpt.1  |-  F  =  ( x  e.  A  |->  C )
Assertion
Ref Expression
fmpt  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem fmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fmpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  C )
21fnmpt 5402 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  F  Fn  A )
31rnmpt 4926 . . . 4  |-  ran  F  =  { y  |  E. x  e.  A  y  =  C }
4 r19.29 2643 . . . . . . 7  |-  ( ( A. x  e.  A  C  e.  B  /\  E. x  e.  A  y  =  C )  ->  E. x  e.  A  ( C  e.  B  /\  y  =  C
) )
5 eleq1 2268 . . . . . . . . 9  |-  ( y  =  C  ->  (
y  e.  B  <->  C  e.  B ) )
65biimparc 299 . . . . . . . 8  |-  ( ( C  e.  B  /\  y  =  C )  ->  y  e.  B )
76rexlimivw 2619 . . . . . . 7  |-  ( E. x  e.  A  ( C  e.  B  /\  y  =  C )  ->  y  e.  B )
84, 7syl 14 . . . . . 6  |-  ( ( A. x  e.  A  C  e.  B  /\  E. x  e.  A  y  =  C )  -> 
y  e.  B )
98ex 115 . . . . 5  |-  ( A. x  e.  A  C  e.  B  ->  ( E. x  e.  A  y  =  C  ->  y  e.  B ) )
109abssdv 3267 . . . 4  |-  ( A. x  e.  A  C  e.  B  ->  { y  |  E. x  e.  A  y  =  C }  C_  B )
113, 10eqsstrid 3239 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  ran  F  C_  B )
12 df-f 5275 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
132, 11, 12sylanbrc 417 . 2  |-  ( A. x  e.  A  C  e.  B  ->  F : A
--> B )
14 fimacnv 5709 . . . 4  |-  ( F : A --> B  -> 
( `' F " B )  =  A )
151mptpreima 5176 . . . 4  |-  ( `' F " B )  =  { x  e.  A  |  C  e.  B }
1614, 15eqtr3di 2253 . . 3  |-  ( F : A --> B  ->  A  =  { x  e.  A  |  C  e.  B } )
17 rabid2 2683 . . 3  |-  ( A  =  { x  e.  A  |  C  e.  B }  <->  A. x  e.  A  C  e.  B )
1816, 17sylib 122 . 2  |-  ( F : A --> B  ->  A. x  e.  A  C  e.  B )
1913, 18impbii 126 1  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   {crab 2488    C_ wss 3166    |-> cmpt 4105   `'ccnv 4674   ran crn 4676   "cima 4678    Fn wfn 5266   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279
This theorem is referenced by:  f1ompt  5731  fmpti  5732  fvmptelcdm  5733  fmptd  5734  fmptdf  5737  rnmptss  5741  f1oresrab  5745  idref  5825  f1mpt  5840  f1stres  6245  f2ndres  6246  fmpox  6286  fmpoco  6302  iunon  6370  mptelixpg  6821  dom2lem  6863  uzf  9651  pcmptcl  12665  gsumfzmhm2  13680  upxp  14744  txdis1cn  14750  cnmpt11  14755  cnmpt21  14763  fsumcncntop  15039  cncfmpt1f  15070  mulcncflem  15079  mulcncf  15080  cnmptlimc  15146  sincn  15241  coscn  15242  lgseisenlem3  15549
  Copyright terms: Public domain W3C validator