| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpt | Unicode version | ||
| Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 |
|
| Ref | Expression |
|---|---|
| fmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt.1 |
. . . 4
| |
| 2 | 1 | fnmpt 5450 |
. . 3
|
| 3 | 1 | rnmpt 4972 |
. . . 4
|
| 4 | r19.29 2668 |
. . . . . . 7
| |
| 5 | eleq1 2292 |
. . . . . . . . 9
| |
| 6 | 5 | biimparc 299 |
. . . . . . . 8
|
| 7 | 6 | rexlimivw 2644 |
. . . . . . 7
|
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | 9 | abssdv 3298 |
. . . 4
|
| 11 | 3, 10 | eqsstrid 3270 |
. . 3
|
| 12 | df-f 5322 |
. . 3
| |
| 13 | 2, 11, 12 | sylanbrc 417 |
. 2
|
| 14 | fimacnv 5764 |
. . . 4
| |
| 15 | 1 | mptpreima 5222 |
. . . 4
|
| 16 | 14, 15 | eqtr3di 2277 |
. . 3
|
| 17 | rabid2 2708 |
. . 3
| |
| 18 | 16, 17 | sylib 122 |
. 2
|
| 19 | 13, 18 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: f1ompt 5786 fmpti 5787 fvmptelcdm 5788 fmptd 5789 fmptdf 5792 rnmptss 5796 f1oresrab 5800 idref 5880 f1mpt 5895 f1stres 6305 f2ndres 6306 fmpox 6346 fmpoco 6362 iunon 6430 mptelixpg 6881 dom2lem 6923 uzf 9725 pcmptcl 12865 gsumfzmhm2 13881 upxp 14946 txdis1cn 14952 cnmpt11 14957 cnmpt21 14965 fsumcncntop 15241 cncfmpt1f 15272 mulcncflem 15281 mulcncf 15282 cnmptlimc 15348 sincn 15443 coscn 15444 lgseisenlem3 15751 |
| Copyright terms: Public domain | W3C validator |