| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpt | Unicode version | ||
| Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmpt.1 |
|
| Ref | Expression |
|---|---|
| fmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt.1 |
. . . 4
| |
| 2 | 1 | fnmpt 5404 |
. . 3
|
| 3 | 1 | rnmpt 4927 |
. . . 4
|
| 4 | r19.29 2643 |
. . . . . . 7
| |
| 5 | eleq1 2268 |
. . . . . . . . 9
| |
| 6 | 5 | biimparc 299 |
. . . . . . . 8
|
| 7 | 6 | rexlimivw 2619 |
. . . . . . 7
|
| 8 | 4, 7 | syl 14 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | 9 | abssdv 3267 |
. . . 4
|
| 11 | 3, 10 | eqsstrid 3239 |
. . 3
|
| 12 | df-f 5276 |
. . 3
| |
| 13 | 2, 11, 12 | sylanbrc 417 |
. 2
|
| 14 | fimacnv 5711 |
. . . 4
| |
| 15 | 1 | mptpreima 5177 |
. . . 4
|
| 16 | 14, 15 | eqtr3di 2253 |
. . 3
|
| 17 | rabid2 2683 |
. . 3
| |
| 18 | 16, 17 | sylib 122 |
. 2
|
| 19 | 13, 18 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 |
| This theorem is referenced by: f1ompt 5733 fmpti 5734 fvmptelcdm 5735 fmptd 5736 fmptdf 5739 rnmptss 5743 f1oresrab 5747 idref 5827 f1mpt 5842 f1stres 6247 f2ndres 6248 fmpox 6288 fmpoco 6304 iunon 6372 mptelixpg 6823 dom2lem 6865 uzf 9653 pcmptcl 12698 gsumfzmhm2 13713 upxp 14777 txdis1cn 14783 cnmpt11 14788 cnmpt21 14796 fsumcncntop 15072 cncfmpt1f 15103 mulcncflem 15112 mulcncf 15113 cnmptlimc 15179 sincn 15274 coscn 15275 lgseisenlem3 15582 |
| Copyright terms: Public domain | W3C validator |