| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fmpt | Unicode version | ||
| Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| fmpt.1 | 
 | 
| Ref | Expression | 
|---|---|
| fmpt | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fmpt.1 | 
. . . 4
 | |
| 2 | 1 | fnmpt 5384 | 
. . 3
 | 
| 3 | 1 | rnmpt 4914 | 
. . . 4
 | 
| 4 | r19.29 2634 | 
. . . . . . 7
 | |
| 5 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 6 | 5 | biimparc 299 | 
. . . . . . . 8
 | 
| 7 | 6 | rexlimivw 2610 | 
. . . . . . 7
 | 
| 8 | 4, 7 | syl 14 | 
. . . . . 6
 | 
| 9 | 8 | ex 115 | 
. . . . 5
 | 
| 10 | 9 | abssdv 3257 | 
. . . 4
 | 
| 11 | 3, 10 | eqsstrid 3229 | 
. . 3
 | 
| 12 | df-f 5262 | 
. . 3
 | |
| 13 | 2, 11, 12 | sylanbrc 417 | 
. 2
 | 
| 14 | fimacnv 5691 | 
. . . 4
 | |
| 15 | 1 | mptpreima 5163 | 
. . . 4
 | 
| 16 | 14, 15 | eqtr3di 2244 | 
. . 3
 | 
| 17 | rabid2 2674 | 
. . 3
 | |
| 18 | 16, 17 | sylib 122 | 
. 2
 | 
| 19 | 13, 18 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 | 
| This theorem is referenced by: f1ompt 5713 fmpti 5714 fvmptelcdm 5715 fmptd 5716 fmptdf 5719 rnmptss 5723 f1oresrab 5727 idref 5803 f1mpt 5818 f1stres 6217 f2ndres 6218 fmpox 6258 fmpoco 6274 iunon 6342 mptelixpg 6793 dom2lem 6831 uzf 9604 pcmptcl 12511 gsumfzmhm2 13474 upxp 14508 txdis1cn 14514 cnmpt11 14519 cnmpt21 14527 fsumcncntop 14803 cncfmpt1f 14834 mulcncflem 14843 mulcncf 14844 cnmptlimc 14910 sincn 15005 coscn 15006 lgseisenlem3 15313 | 
| Copyright terms: Public domain | W3C validator |