ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemasr Unicode version

Theorem caucvgsrlemasr 7977
Description: Lemma for caucvgsr 7989. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
Hypothesis
Ref Expression
caucvgsrlemasr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemasr  |-  ( ph  ->  A  e.  R. )
Distinct variable group:    A, m
Allowed substitution hints:    ph( m)    F( m)

Proof of Theorem caucvgsrlemasr
StepHypRef Expression
1 caucvgsrlemasr.bnd . . 3  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
2 ltrelsr 7925 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
32brel 4771 . . . . 5  |-  ( A 
<R  ( F `  m
)  ->  ( A  e.  R.  /\  ( F `
 m )  e. 
R. ) )
43simpld 112 . . . 4  |-  ( A 
<R  ( F `  m
)  ->  A  e.  R. )
54ralimi 2593 . . 3  |-  ( A. m  e.  N.  A  <R  ( F `  m
)  ->  A. m  e.  N.  A  e.  R. )
61, 5syl 14 . 2  |-  ( ph  ->  A. m  e.  N.  A  e.  R. )
7 1pi 7502 . . 3  |-  1o  e.  N.
8 elex2 2816 . . 3  |-  ( 1o  e.  N.  ->  E. x  x  e.  N. )
9 r19.3rmv 3582 . . 3  |-  ( E. x  x  e.  N.  ->  ( A  e.  R.  <->  A. m  e.  N.  A  e.  R. ) )
107, 8, 9mp2b 8 . 2  |-  ( A  e.  R.  <->  A. m  e.  N.  A  e.  R. )
116, 10sylibr 134 1  |-  ( ph  ->  A  e.  R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1538    e. wcel 2200   A.wral 2508   class class class wbr 4083   ` cfv 5318   1oc1o 6555   N.cnpi 7459   R.cnr 7484    <R cltr 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-suc 4462  df-iom 4683  df-xp 4725  df-1o 6562  df-ni 7491  df-ltr 7917
This theorem is referenced by:  caucvgsrlemoffval  7983  caucvgsrlemofff  7984  caucvgsrlemoffcau  7985  caucvgsrlemoffgt1  7986  caucvgsrlemoffres  7987
  Copyright terms: Public domain W3C validator