ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemasr Unicode version

Theorem caucvgsrlemasr 7432
Description: Lemma for caucvgsr 7444. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
Hypothesis
Ref Expression
caucvgsrlemasr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemasr  |-  ( ph  ->  A  e.  R. )
Distinct variable group:    A, m
Allowed substitution hints:    ph( m)    F( m)

Proof of Theorem caucvgsrlemasr
StepHypRef Expression
1 caucvgsrlemasr.bnd . . 3  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
2 ltrelsr 7381 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
32brel 4519 . . . . 5  |-  ( A 
<R  ( F `  m
)  ->  ( A  e.  R.  /\  ( F `
 m )  e. 
R. ) )
43simpld 111 . . . 4  |-  ( A 
<R  ( F `  m
)  ->  A  e.  R. )
54ralimi 2449 . . 3  |-  ( A. m  e.  N.  A  <R  ( F `  m
)  ->  A. m  e.  N.  A  e.  R. )
61, 5syl 14 . 2  |-  ( ph  ->  A. m  e.  N.  A  e.  R. )
7 1pi 6971 . . 3  |-  1o  e.  N.
8 elex2 2649 . . 3  |-  ( 1o  e.  N.  ->  E. x  x  e.  N. )
9 r19.3rmv 3392 . . 3  |-  ( E. x  x  e.  N.  ->  ( A  e.  R.  <->  A. m  e.  N.  A  e.  R. ) )
107, 8, 9mp2b 8 . 2  |-  ( A  e.  R.  <->  A. m  e.  N.  A  e.  R. )
116, 10sylibr 133 1  |-  ( ph  ->  A  e.  R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wex 1433    e. wcel 1445   A.wral 2370   class class class wbr 3867   ` cfv 5049   1oc1o 6212   N.cnpi 6928   R.cnr 6953    <R cltr 6959
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-suc 4222  df-iom 4434  df-xp 4473  df-1o 6219  df-ni 6960  df-ltr 7373
This theorem is referenced by:  caucvgsrlemoffval  7438  caucvgsrlemofff  7439  caucvgsrlemoffcau  7440  caucvgsrlemoffgt1  7441  caucvgsrlemoffres  7442
  Copyright terms: Public domain W3C validator