ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemasr Unicode version

Theorem caucvgsrlemasr 7903
Description: Lemma for caucvgsr 7915. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
Hypothesis
Ref Expression
caucvgsrlemasr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
Assertion
Ref Expression
caucvgsrlemasr  |-  ( ph  ->  A  e.  R. )
Distinct variable group:    A, m
Allowed substitution hints:    ph( m)    F( m)

Proof of Theorem caucvgsrlemasr
StepHypRef Expression
1 caucvgsrlemasr.bnd . . 3  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
2 ltrelsr 7851 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
32brel 4727 . . . . 5  |-  ( A 
<R  ( F `  m
)  ->  ( A  e.  R.  /\  ( F `
 m )  e. 
R. ) )
43simpld 112 . . . 4  |-  ( A 
<R  ( F `  m
)  ->  A  e.  R. )
54ralimi 2569 . . 3  |-  ( A. m  e.  N.  A  <R  ( F `  m
)  ->  A. m  e.  N.  A  e.  R. )
61, 5syl 14 . 2  |-  ( ph  ->  A. m  e.  N.  A  e.  R. )
7 1pi 7428 . . 3  |-  1o  e.  N.
8 elex2 2788 . . 3  |-  ( 1o  e.  N.  ->  E. x  x  e.  N. )
9 r19.3rmv 3551 . . 3  |-  ( E. x  x  e.  N.  ->  ( A  e.  R.  <->  A. m  e.  N.  A  e.  R. ) )
107, 8, 9mp2b 8 . 2  |-  ( A  e.  R.  <->  A. m  e.  N.  A  e.  R. )
116, 10sylibr 134 1  |-  ( ph  ->  A  e.  R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1515    e. wcel 2176   A.wral 2484   class class class wbr 4044   ` cfv 5271   1oc1o 6495   N.cnpi 7385   R.cnr 7410    <R cltr 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-suc 4418  df-iom 4639  df-xp 4681  df-1o 6502  df-ni 7417  df-ltr 7843
This theorem is referenced by:  caucvgsrlemoffval  7909  caucvgsrlemofff  7910  caucvgsrlemoffcau  7911  caucvgsrlemoffgt1  7912  caucvgsrlemoffres  7913
  Copyright terms: Public domain W3C validator