| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralunb | Unicode version | ||
| Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralunb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3304 |
. . . . . 6
| |
| 2 | 1 | imbi1i 238 |
. . . . 5
|
| 3 | jaob 711 |
. . . . 5
| |
| 4 | 2, 3 | bitri 184 |
. . . 4
|
| 5 | 4 | albii 1484 |
. . 3
|
| 6 | 19.26 1495 |
. . 3
| |
| 7 | 5, 6 | bitri 184 |
. 2
|
| 8 | df-ral 2480 |
. 2
| |
| 9 | df-ral 2480 |
. . 3
| |
| 10 | df-ral 2480 |
. . 3
| |
| 11 | 9, 10 | anbi12i 460 |
. 2
|
| 12 | 7, 8, 11 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 |
| This theorem is referenced by: ralun 3345 ralprg 3673 raltpg 3675 ralunsn 3827 dcfi 7047 zsupcllemstep 10319 rexfiuz 11154 modfsummodlemstep 11622 modfsummod 11623 prmind2 12288 2sqlem10 15366 nninfsellemdc 15654 nninfsellemsuc 15656 |
| Copyright terms: Public domain | W3C validator |