Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralunb | Unicode version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3263 | . . . . . 6 | |
2 | 1 | imbi1i 237 | . . . . 5 |
3 | jaob 700 | . . . . 5 | |
4 | 2, 3 | bitri 183 | . . . 4 |
5 | 4 | albii 1458 | . . 3 |
6 | 19.26 1469 | . . 3 | |
7 | 5, 6 | bitri 183 | . 2 |
8 | df-ral 2449 | . 2 | |
9 | df-ral 2449 | . . 3 | |
10 | df-ral 2449 | . . 3 | |
11 | 9, 10 | anbi12i 456 | . 2 |
12 | 7, 8, 11 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wal 1341 wcel 2136 wral 2444 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 |
This theorem is referenced by: ralun 3304 ralprg 3627 raltpg 3629 ralunsn 3777 dcfi 6946 rexfiuz 10931 modfsummodlemstep 11398 modfsummod 11399 zsupcllemstep 11878 prmind2 12052 2sqlem10 13601 nninfsellemdc 13890 nninfsellemsuc 13892 |
Copyright terms: Public domain | W3C validator |