| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralunb | Unicode version | ||
| Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralunb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3322 |
. . . . . 6
| |
| 2 | 1 | imbi1i 238 |
. . . . 5
|
| 3 | jaob 712 |
. . . . 5
| |
| 4 | 2, 3 | bitri 184 |
. . . 4
|
| 5 | 4 | albii 1494 |
. . 3
|
| 6 | 19.26 1505 |
. . 3
| |
| 7 | 5, 6 | bitri 184 |
. 2
|
| 8 | df-ral 2491 |
. 2
| |
| 9 | df-ral 2491 |
. . 3
| |
| 10 | df-ral 2491 |
. . 3
| |
| 11 | 9, 10 | anbi12i 460 |
. 2
|
| 12 | 7, 8, 11 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 |
| This theorem is referenced by: ralun 3363 ralprg 3694 raltpg 3696 ralunsn 3852 dcfi 7109 zsupcllemstep 10409 pfxsuffeqwrdeq 11189 rexfiuz 11415 modfsummodlemstep 11883 modfsummod 11884 prmind2 12557 2sqlem10 15717 nninfsellemdc 16149 nninfsellemsuc 16151 |
| Copyright terms: Public domain | W3C validator |