ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralunb Unicode version

Theorem ralunb 3179
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ralunb  |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )

Proof of Theorem ralunb
StepHypRef Expression
1 elun 3139 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
21imbi1i 236 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  ->  ph )  <->  ( ( x  e.  A  \/  x  e.  B )  ->  ph )
)
3 jaob 666 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  ->  ph )  <->  ( (
x  e.  A  ->  ph )  /\  (
x  e.  B  ->  ph ) ) )
42, 3bitri 182 . . . 4  |-  ( ( x  e.  ( A  u.  B )  ->  ph )  <->  ( ( x  e.  A  ->  ph )  /\  ( x  e.  B  ->  ph ) ) )
54albii 1404 . . 3  |-  ( A. x ( x  e.  ( A  u.  B
)  ->  ph )  <->  A. x
( ( x  e.  A  ->  ph )  /\  ( x  e.  B  ->  ph ) ) )
6 19.26 1415 . . 3  |-  ( A. x ( ( x  e.  A  ->  ph )  /\  ( x  e.  B  ->  ph ) )  <->  ( A. x ( x  e.  A  ->  ph )  /\  A. x ( x  e.  B  ->  ph ) ) )
75, 6bitri 182 . 2  |-  ( A. x ( x  e.  ( A  u.  B
)  ->  ph )  <->  ( A. x ( x  e.  A  ->  ph )  /\  A. x ( x  e.  B  ->  ph ) ) )
8 df-ral 2364 . 2  |-  ( A. x  e.  ( A  u.  B ) ph  <->  A. x
( x  e.  ( A  u.  B )  ->  ph ) )
9 df-ral 2364 . . 3  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
10 df-ral 2364 . . 3  |-  ( A. x  e.  B  ph  <->  A. x
( x  e.  B  ->  ph ) )
119, 10anbi12i 448 . 2  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  B  ph )  <->  ( A. x
( x  e.  A  ->  ph )  /\  A. x ( x  e.  B  ->  ph ) ) )
127, 8, 113bitr4i 210 1  |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664   A.wal 1287    e. wcel 1438   A.wral 2359    u. cun 2995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-un 3001
This theorem is referenced by:  ralun  3180  ralprg  3488  raltpg  3490  ralunsn  3636  rexfiuz  10387  modfsummodlemstep  10814  modfsummod  10815  zsupcllemstep  11023  prmind2  11184  nninfsellemdc  11548  nninfsellemsuc  11550
  Copyright terms: Public domain W3C validator