ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralprg GIF version

Theorem ralprg 3476
Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralprg ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ralprg
StepHypRef Expression
1 df-pr 3438 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21raleqi 2562 . . 3 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑)
3 ralunb 3170 . . 3 (∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
42, 3bitri 182 . 2 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
5 ralprg.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
65ralsng 3466 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
7 ralprg.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜒))
87ralsng 3466 . . 3 (𝐵𝑊 → (∀𝑥 ∈ {𝐵}𝜑𝜒))
96, 8bi2anan9 571 . 2 ((𝐴𝑉𝐵𝑊) → ((∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
104, 9syl5bb 190 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  wral 2355  cun 2986  {csn 3431  {cpr 3432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-v 2617  df-sbc 2830  df-un 2992  df-sn 3437  df-pr 3438
This theorem is referenced by:  raltpg  3478  ralpr  3480  iinxprg  3787  fvinim0ffz  9580
  Copyright terms: Public domain W3C validator