ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvinim0ffz Unicode version

Theorem fvinim0ffz 10368
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
Assertion
Ref Expression
fvinim0ffz  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )

Proof of Theorem fvinim0ffz
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 ffn 5424 . . . . . 6  |-  ( F : ( 0 ... K ) --> V  ->  F  Fn  ( 0 ... K ) )
21adantr 276 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  F  Fn  (
0 ... K ) )
3 0nn0 9309 . . . . . . 7  |-  0  e.  NN0
43a1i 9 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  e.  NN0 )
5 simpr 110 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  K  e.  NN0 )
6 nn0ge0 9319 . . . . . . 7  |-  ( K  e.  NN0  ->  0  <_  K )
76adantl 277 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  <_  K
)
8 elfz2nn0 10233 . . . . . 6  |-  ( 0  e.  ( 0 ... K )  <->  ( 0  e.  NN0  /\  K  e. 
NN0  /\  0  <_  K ) )
94, 5, 7, 8syl3anbrc 1183 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  e.  ( 0 ... K ) )
10 id 19 . . . . . . 7  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
11 nn0re 9303 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  RR )
1211leidd 8586 . . . . . . 7  |-  ( K  e.  NN0  ->  K  <_  K )
13 elfz2nn0 10233 . . . . . . 7  |-  ( K  e.  ( 0 ... K )  <->  ( K  e.  NN0  /\  K  e. 
NN0  /\  K  <_  K ) )
1410, 10, 12, 13syl3anbrc 1183 . . . . . 6  |-  ( K  e.  NN0  ->  K  e.  ( 0 ... K
) )
1514adantl 277 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  K  e.  ( 0 ... K ) )
16 fnimapr 5638 . . . . 5  |-  ( ( F  Fn  ( 0 ... K )  /\  0  e.  ( 0 ... K )  /\  K  e.  ( 0 ... K ) )  ->  ( F " { 0 ,  K } )  =  {
( F `  0
) ,  ( F `
 K ) } )
172, 9, 15, 16syl3anc 1249 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F " { 0 ,  K } )  =  {
( F `  0
) ,  ( F `
 K ) } )
1817ineq1d 3372 . . 3  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( F
" { 0 ,  K } )  i^i  ( F " (
1..^ K ) ) )  =  ( { ( F `  0
) ,  ( F `
 K ) }  i^i  ( F "
( 1..^ K ) ) ) )
1918eqeq1d 2213 . 2  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  ( { ( F ` 
0 ) ,  ( F `  K ) }  i^i  ( F
" ( 1..^ K ) ) )  =  (/) ) )
20 disj 3508 . . 3  |-  ( ( { ( F ` 
0 ) ,  ( F `  K ) }  i^i  ( F
" ( 1..^ K ) ) )  =  (/) 
<-> 
A. v  e.  {
( F `  0
) ,  ( F `
 K ) }  -.  v  e.  ( F " ( 1..^ K ) ) )
21 simpl 109 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  F : ( 0 ... K ) --> V )
2221, 9ffvelcdmd 5715 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F ` 
0 )  e.  V
)
2321, 15ffvelcdmd 5715 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F `  K )  e.  V
)
24 eleq1 2267 . . . . . . 7  |-  ( v  =  ( F ` 
0 )  ->  (
v  e.  ( F
" ( 1..^ K ) )  <->  ( F `  0 )  e.  ( F " (
1..^ K ) ) ) )
2524notbid 668 . . . . . 6  |-  ( v  =  ( F ` 
0 )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  -.  ( F `  0 )  e.  ( F " (
1..^ K ) ) ) )
26 df-nel 2471 . . . . . 6  |-  ( ( F `  0 )  e/  ( F "
( 1..^ K ) )  <->  -.  ( F `  0 )  e.  ( F " (
1..^ K ) ) )
2725, 26bitr4di 198 . . . . 5  |-  ( v  =  ( F ` 
0 )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  ( F `  0 )  e/  ( F " ( 1..^ K ) ) ) )
28 eleq1 2267 . . . . . . 7  |-  ( v  =  ( F `  K )  ->  (
v  e.  ( F
" ( 1..^ K ) )  <->  ( F `  K )  e.  ( F " ( 1..^ K ) ) ) )
2928notbid 668 . . . . . 6  |-  ( v  =  ( F `  K )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  -.  ( F `  K )  e.  ( F " (
1..^ K ) ) ) )
30 df-nel 2471 . . . . . 6  |-  ( ( F `  K )  e/  ( F "
( 1..^ K ) )  <->  -.  ( F `  K )  e.  ( F " ( 1..^ K ) ) )
3129, 30bitr4di 198 . . . . 5  |-  ( v  =  ( F `  K )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  ( F `  K )  e/  ( F " ( 1..^ K ) ) ) )
3227, 31ralprg 3683 . . . 4  |-  ( ( ( F `  0
)  e.  V  /\  ( F `  K )  e.  V )  -> 
( A. v  e. 
{ ( F ` 
0 ) ,  ( F `  K ) }  -.  v  e.  ( F " (
1..^ K ) )  <-> 
( ( F ` 
0 )  e/  ( F " ( 1..^ K ) )  /\  ( F `  K )  e/  ( F " (
1..^ K ) ) ) ) )
3322, 23, 32syl2anc 411 . . 3  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( A. v  e.  { ( F ` 
0 ) ,  ( F `  K ) }  -.  v  e.  ( F " (
1..^ K ) )  <-> 
( ( F ` 
0 )  e/  ( F " ( 1..^ K ) )  /\  ( F `  K )  e/  ( F " (
1..^ K ) ) ) ) )
3420, 33bitrid 192 . 2  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( { ( F `  0
) ,  ( F `
 K ) }  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )
3519, 34bitrd 188 1  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175    e/ wnel 2470   A.wral 2483    i^i cin 3164   (/)c0 3459   {cpr 3633   class class class wbr 4043   "cima 4677    Fn wfn 5265   -->wf 5266   ` cfv 5270  (class class class)co 5943   0cc0 7924   1c1 7925    <_ cle 8107   NN0cn0 9294   ...cfz 10129  ..^cfzo 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator