ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvinim0ffz Unicode version

Theorem fvinim0ffz 10392
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
Assertion
Ref Expression
fvinim0ffz  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )

Proof of Theorem fvinim0ffz
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 ffn 5435 . . . . . 6  |-  ( F : ( 0 ... K ) --> V  ->  F  Fn  ( 0 ... K ) )
21adantr 276 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  F  Fn  (
0 ... K ) )
3 0nn0 9330 . . . . . . 7  |-  0  e.  NN0
43a1i 9 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  e.  NN0 )
5 simpr 110 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  K  e.  NN0 )
6 nn0ge0 9340 . . . . . . 7  |-  ( K  e.  NN0  ->  0  <_  K )
76adantl 277 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  <_  K
)
8 elfz2nn0 10254 . . . . . 6  |-  ( 0  e.  ( 0 ... K )  <->  ( 0  e.  NN0  /\  K  e. 
NN0  /\  0  <_  K ) )
94, 5, 7, 8syl3anbrc 1184 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  e.  ( 0 ... K ) )
10 id 19 . . . . . . 7  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
11 nn0re 9324 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  RR )
1211leidd 8607 . . . . . . 7  |-  ( K  e.  NN0  ->  K  <_  K )
13 elfz2nn0 10254 . . . . . . 7  |-  ( K  e.  ( 0 ... K )  <->  ( K  e.  NN0  /\  K  e. 
NN0  /\  K  <_  K ) )
1410, 10, 12, 13syl3anbrc 1184 . . . . . 6  |-  ( K  e.  NN0  ->  K  e.  ( 0 ... K
) )
1514adantl 277 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  K  e.  ( 0 ... K ) )
16 fnimapr 5652 . . . . 5  |-  ( ( F  Fn  ( 0 ... K )  /\  0  e.  ( 0 ... K )  /\  K  e.  ( 0 ... K ) )  ->  ( F " { 0 ,  K } )  =  {
( F `  0
) ,  ( F `
 K ) } )
172, 9, 15, 16syl3anc 1250 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F " { 0 ,  K } )  =  {
( F `  0
) ,  ( F `
 K ) } )
1817ineq1d 3377 . . 3  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( F
" { 0 ,  K } )  i^i  ( F " (
1..^ K ) ) )  =  ( { ( F `  0
) ,  ( F `
 K ) }  i^i  ( F "
( 1..^ K ) ) ) )
1918eqeq1d 2215 . 2  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  ( { ( F ` 
0 ) ,  ( F `  K ) }  i^i  ( F
" ( 1..^ K ) ) )  =  (/) ) )
20 disj 3513 . . 3  |-  ( ( { ( F ` 
0 ) ,  ( F `  K ) }  i^i  ( F
" ( 1..^ K ) ) )  =  (/) 
<-> 
A. v  e.  {
( F `  0
) ,  ( F `
 K ) }  -.  v  e.  ( F " ( 1..^ K ) ) )
21 simpl 109 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  F : ( 0 ... K ) --> V )
2221, 9ffvelcdmd 5729 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F ` 
0 )  e.  V
)
2321, 15ffvelcdmd 5729 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F `  K )  e.  V
)
24 eleq1 2269 . . . . . . 7  |-  ( v  =  ( F ` 
0 )  ->  (
v  e.  ( F
" ( 1..^ K ) )  <->  ( F `  0 )  e.  ( F " (
1..^ K ) ) ) )
2524notbid 669 . . . . . 6  |-  ( v  =  ( F ` 
0 )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  -.  ( F `  0 )  e.  ( F " (
1..^ K ) ) ) )
26 df-nel 2473 . . . . . 6  |-  ( ( F `  0 )  e/  ( F "
( 1..^ K ) )  <->  -.  ( F `  0 )  e.  ( F " (
1..^ K ) ) )
2725, 26bitr4di 198 . . . . 5  |-  ( v  =  ( F ` 
0 )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  ( F `  0 )  e/  ( F " ( 1..^ K ) ) ) )
28 eleq1 2269 . . . . . . 7  |-  ( v  =  ( F `  K )  ->  (
v  e.  ( F
" ( 1..^ K ) )  <->  ( F `  K )  e.  ( F " ( 1..^ K ) ) ) )
2928notbid 669 . . . . . 6  |-  ( v  =  ( F `  K )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  -.  ( F `  K )  e.  ( F " (
1..^ K ) ) ) )
30 df-nel 2473 . . . . . 6  |-  ( ( F `  K )  e/  ( F "
( 1..^ K ) )  <->  -.  ( F `  K )  e.  ( F " ( 1..^ K ) ) )
3129, 30bitr4di 198 . . . . 5  |-  ( v  =  ( F `  K )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  ( F `  K )  e/  ( F " ( 1..^ K ) ) ) )
3227, 31ralprg 3689 . . . 4  |-  ( ( ( F `  0
)  e.  V  /\  ( F `  K )  e.  V )  -> 
( A. v  e. 
{ ( F ` 
0 ) ,  ( F `  K ) }  -.  v  e.  ( F " (
1..^ K ) )  <-> 
( ( F ` 
0 )  e/  ( F " ( 1..^ K ) )  /\  ( F `  K )  e/  ( F " (
1..^ K ) ) ) ) )
3322, 23, 32syl2anc 411 . . 3  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( A. v  e.  { ( F ` 
0 ) ,  ( F `  K ) }  -.  v  e.  ( F " (
1..^ K ) )  <-> 
( ( F ` 
0 )  e/  ( F " ( 1..^ K ) )  /\  ( F `  K )  e/  ( F " (
1..^ K ) ) ) ) )
3420, 33bitrid 192 . 2  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( { ( F `  0
) ,  ( F `
 K ) }  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )
3519, 34bitrd 188 1  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    e/ wnel 2472   A.wral 2485    i^i cin 3169   (/)c0 3464   {cpr 3639   class class class wbr 4051   "cima 4686    Fn wfn 5275   -->wf 5276   ` cfv 5280  (class class class)co 5957   0cc0 7945   1c1 7946    <_ cle 8128   NN0cn0 9315   ...cfz 10150  ..^cfzo 10284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator