ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvinim0ffz Unicode version

Theorem fvinim0ffz 10243
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
Assertion
Ref Expression
fvinim0ffz  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )

Proof of Theorem fvinim0ffz
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 ffn 5367 . . . . . 6  |-  ( F : ( 0 ... K ) --> V  ->  F  Fn  ( 0 ... K ) )
21adantr 276 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  F  Fn  (
0 ... K ) )
3 0nn0 9193 . . . . . . 7  |-  0  e.  NN0
43a1i 9 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  e.  NN0 )
5 simpr 110 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  K  e.  NN0 )
6 nn0ge0 9203 . . . . . . 7  |-  ( K  e.  NN0  ->  0  <_  K )
76adantl 277 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  <_  K
)
8 elfz2nn0 10114 . . . . . 6  |-  ( 0  e.  ( 0 ... K )  <->  ( 0  e.  NN0  /\  K  e. 
NN0  /\  0  <_  K ) )
94, 5, 7, 8syl3anbrc 1181 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  e.  ( 0 ... K ) )
10 id 19 . . . . . . 7  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
11 nn0re 9187 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  RR )
1211leidd 8473 . . . . . . 7  |-  ( K  e.  NN0  ->  K  <_  K )
13 elfz2nn0 10114 . . . . . . 7  |-  ( K  e.  ( 0 ... K )  <->  ( K  e.  NN0  /\  K  e. 
NN0  /\  K  <_  K ) )
1410, 10, 12, 13syl3anbrc 1181 . . . . . 6  |-  ( K  e.  NN0  ->  K  e.  ( 0 ... K
) )
1514adantl 277 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  K  e.  ( 0 ... K ) )
16 fnimapr 5578 . . . . 5  |-  ( ( F  Fn  ( 0 ... K )  /\  0  e.  ( 0 ... K )  /\  K  e.  ( 0 ... K ) )  ->  ( F " { 0 ,  K } )  =  {
( F `  0
) ,  ( F `
 K ) } )
172, 9, 15, 16syl3anc 1238 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F " { 0 ,  K } )  =  {
( F `  0
) ,  ( F `
 K ) } )
1817ineq1d 3337 . . 3  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( F
" { 0 ,  K } )  i^i  ( F " (
1..^ K ) ) )  =  ( { ( F `  0
) ,  ( F `
 K ) }  i^i  ( F "
( 1..^ K ) ) ) )
1918eqeq1d 2186 . 2  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  ( { ( F ` 
0 ) ,  ( F `  K ) }  i^i  ( F
" ( 1..^ K ) ) )  =  (/) ) )
20 disj 3473 . . 3  |-  ( ( { ( F ` 
0 ) ,  ( F `  K ) }  i^i  ( F
" ( 1..^ K ) ) )  =  (/) 
<-> 
A. v  e.  {
( F `  0
) ,  ( F `
 K ) }  -.  v  e.  ( F " ( 1..^ K ) ) )
21 simpl 109 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  F : ( 0 ... K ) --> V )
2221, 9ffvelcdmd 5654 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F ` 
0 )  e.  V
)
2321, 15ffvelcdmd 5654 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F `  K )  e.  V
)
24 eleq1 2240 . . . . . . 7  |-  ( v  =  ( F ` 
0 )  ->  (
v  e.  ( F
" ( 1..^ K ) )  <->  ( F `  0 )  e.  ( F " (
1..^ K ) ) ) )
2524notbid 667 . . . . . 6  |-  ( v  =  ( F ` 
0 )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  -.  ( F `  0 )  e.  ( F " (
1..^ K ) ) ) )
26 df-nel 2443 . . . . . 6  |-  ( ( F `  0 )  e/  ( F "
( 1..^ K ) )  <->  -.  ( F `  0 )  e.  ( F " (
1..^ K ) ) )
2725, 26bitr4di 198 . . . . 5  |-  ( v  =  ( F ` 
0 )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  ( F `  0 )  e/  ( F " ( 1..^ K ) ) ) )
28 eleq1 2240 . . . . . . 7  |-  ( v  =  ( F `  K )  ->  (
v  e.  ( F
" ( 1..^ K ) )  <->  ( F `  K )  e.  ( F " ( 1..^ K ) ) ) )
2928notbid 667 . . . . . 6  |-  ( v  =  ( F `  K )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  -.  ( F `  K )  e.  ( F " (
1..^ K ) ) ) )
30 df-nel 2443 . . . . . 6  |-  ( ( F `  K )  e/  ( F "
( 1..^ K ) )  <->  -.  ( F `  K )  e.  ( F " ( 1..^ K ) ) )
3129, 30bitr4di 198 . . . . 5  |-  ( v  =  ( F `  K )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  ( F `  K )  e/  ( F " ( 1..^ K ) ) ) )
3227, 31ralprg 3645 . . . 4  |-  ( ( ( F `  0
)  e.  V  /\  ( F `  K )  e.  V )  -> 
( A. v  e. 
{ ( F ` 
0 ) ,  ( F `  K ) }  -.  v  e.  ( F " (
1..^ K ) )  <-> 
( ( F ` 
0 )  e/  ( F " ( 1..^ K ) )  /\  ( F `  K )  e/  ( F " (
1..^ K ) ) ) ) )
3322, 23, 32syl2anc 411 . . 3  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( A. v  e.  { ( F ` 
0 ) ,  ( F `  K ) }  -.  v  e.  ( F " (
1..^ K ) )  <-> 
( ( F ` 
0 )  e/  ( F " ( 1..^ K ) )  /\  ( F `  K )  e/  ( F " (
1..^ K ) ) ) ) )
3420, 33bitrid 192 . 2  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( { ( F `  0
) ,  ( F `
 K ) }  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )
3519, 34bitrd 188 1  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    e/ wnel 2442   A.wral 2455    i^i cin 3130   (/)c0 3424   {cpr 3595   class class class wbr 4005   "cima 4631    Fn wfn 5213   -->wf 5214   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    <_ cle 7995   NN0cn0 9178   ...cfz 10010  ..^cfzo 10144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator