ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvinim0ffz Unicode version

Theorem fvinim0ffz 10334
Description: The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
Assertion
Ref Expression
fvinim0ffz  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )

Proof of Theorem fvinim0ffz
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 ffn 5410 . . . . . 6  |-  ( F : ( 0 ... K ) --> V  ->  F  Fn  ( 0 ... K ) )
21adantr 276 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  F  Fn  (
0 ... K ) )
3 0nn0 9281 . . . . . . 7  |-  0  e.  NN0
43a1i 9 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  e.  NN0 )
5 simpr 110 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  K  e.  NN0 )
6 nn0ge0 9291 . . . . . . 7  |-  ( K  e.  NN0  ->  0  <_  K )
76adantl 277 . . . . . 6  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  <_  K
)
8 elfz2nn0 10204 . . . . . 6  |-  ( 0  e.  ( 0 ... K )  <->  ( 0  e.  NN0  /\  K  e. 
NN0  /\  0  <_  K ) )
94, 5, 7, 8syl3anbrc 1183 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  0  e.  ( 0 ... K ) )
10 id 19 . . . . . . 7  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
11 nn0re 9275 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  RR )
1211leidd 8558 . . . . . . 7  |-  ( K  e.  NN0  ->  K  <_  K )
13 elfz2nn0 10204 . . . . . . 7  |-  ( K  e.  ( 0 ... K )  <->  ( K  e.  NN0  /\  K  e. 
NN0  /\  K  <_  K ) )
1410, 10, 12, 13syl3anbrc 1183 . . . . . 6  |-  ( K  e.  NN0  ->  K  e.  ( 0 ... K
) )
1514adantl 277 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  K  e.  ( 0 ... K ) )
16 fnimapr 5624 . . . . 5  |-  ( ( F  Fn  ( 0 ... K )  /\  0  e.  ( 0 ... K )  /\  K  e.  ( 0 ... K ) )  ->  ( F " { 0 ,  K } )  =  {
( F `  0
) ,  ( F `
 K ) } )
172, 9, 15, 16syl3anc 1249 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F " { 0 ,  K } )  =  {
( F `  0
) ,  ( F `
 K ) } )
1817ineq1d 3364 . . 3  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( F
" { 0 ,  K } )  i^i  ( F " (
1..^ K ) ) )  =  ( { ( F `  0
) ,  ( F `
 K ) }  i^i  ( F "
( 1..^ K ) ) ) )
1918eqeq1d 2205 . 2  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  ( { ( F ` 
0 ) ,  ( F `  K ) }  i^i  ( F
" ( 1..^ K ) ) )  =  (/) ) )
20 disj 3500 . . 3  |-  ( ( { ( F ` 
0 ) ,  ( F `  K ) }  i^i  ( F
" ( 1..^ K ) ) )  =  (/) 
<-> 
A. v  e.  {
( F `  0
) ,  ( F `
 K ) }  -.  v  e.  ( F " ( 1..^ K ) ) )
21 simpl 109 . . . . 5  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  F : ( 0 ... K ) --> V )
2221, 9ffvelcdmd 5701 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F ` 
0 )  e.  V
)
2321, 15ffvelcdmd 5701 . . . 4  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( F `  K )  e.  V
)
24 eleq1 2259 . . . . . . 7  |-  ( v  =  ( F ` 
0 )  ->  (
v  e.  ( F
" ( 1..^ K ) )  <->  ( F `  0 )  e.  ( F " (
1..^ K ) ) ) )
2524notbid 668 . . . . . 6  |-  ( v  =  ( F ` 
0 )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  -.  ( F `  0 )  e.  ( F " (
1..^ K ) ) ) )
26 df-nel 2463 . . . . . 6  |-  ( ( F `  0 )  e/  ( F "
( 1..^ K ) )  <->  -.  ( F `  0 )  e.  ( F " (
1..^ K ) ) )
2725, 26bitr4di 198 . . . . 5  |-  ( v  =  ( F ` 
0 )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  ( F `  0 )  e/  ( F " ( 1..^ K ) ) ) )
28 eleq1 2259 . . . . . . 7  |-  ( v  =  ( F `  K )  ->  (
v  e.  ( F
" ( 1..^ K ) )  <->  ( F `  K )  e.  ( F " ( 1..^ K ) ) ) )
2928notbid 668 . . . . . 6  |-  ( v  =  ( F `  K )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  -.  ( F `  K )  e.  ( F " (
1..^ K ) ) ) )
30 df-nel 2463 . . . . . 6  |-  ( ( F `  K )  e/  ( F "
( 1..^ K ) )  <->  -.  ( F `  K )  e.  ( F " ( 1..^ K ) ) )
3129, 30bitr4di 198 . . . . 5  |-  ( v  =  ( F `  K )  ->  ( -.  v  e.  ( F " ( 1..^ K ) )  <->  ( F `  K )  e/  ( F " ( 1..^ K ) ) ) )
3227, 31ralprg 3674 . . . 4  |-  ( ( ( F `  0
)  e.  V  /\  ( F `  K )  e.  V )  -> 
( A. v  e. 
{ ( F ` 
0 ) ,  ( F `  K ) }  -.  v  e.  ( F " (
1..^ K ) )  <-> 
( ( F ` 
0 )  e/  ( F " ( 1..^ K ) )  /\  ( F `  K )  e/  ( F " (
1..^ K ) ) ) ) )
3322, 23, 32syl2anc 411 . . 3  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( A. v  e.  { ( F ` 
0 ) ,  ( F `  K ) }  -.  v  e.  ( F " (
1..^ K ) )  <-> 
( ( F ` 
0 )  e/  ( F " ( 1..^ K ) )  /\  ( F `  K )  e/  ( F " (
1..^ K ) ) ) ) )
3420, 33bitrid 192 . 2  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( { ( F `  0
) ,  ( F `
 K ) }  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )
3519, 34bitrd 188 1  |-  ( ( F : ( 0 ... K ) --> V  /\  K  e.  NN0 )  ->  ( ( ( F " { 0 ,  K } )  i^i  ( F "
( 1..^ K ) ) )  =  (/)  <->  (
( F `  0
)  e/  ( F " ( 1..^ K ) )  /\  ( F `
 K )  e/  ( F " ( 1..^ K ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    e/ wnel 2462   A.wral 2475    i^i cin 3156   (/)c0 3451   {cpr 3624   class class class wbr 4034   "cima 4667    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925   0cc0 7896   1c1 7897    <_ cle 8079   NN0cn0 9266   ...cfz 10100  ..^cfzo 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator