ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumpr Unicode version

Theorem sumpr 11314
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Hypotheses
Ref Expression
sumpr.1  |-  ( k  =  A  ->  C  =  D )
sumpr.2  |-  ( k  =  B  ->  C  =  E )
sumpr.3  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC ) )
sumpr.4  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
sumpr.5  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
sumpr  |-  ( ph  -> 
sum_ k  e.  { A ,  B } C  =  ( D  +  E ) )
Distinct variable groups:    A, k    B, k    D, k    k, E    ph, k    k, V    k, W
Allowed substitution hint:    C( k)

Proof of Theorem sumpr
StepHypRef Expression
1 sumpr.5 . . . 4  |-  ( ph  ->  A  =/=  B )
2 disjsn2 3623 . . . 4  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
31, 2syl 14 . . 3  |-  ( ph  ->  ( { A }  i^i  { B } )  =  (/) )
4 df-pr 3567 . . . 4  |-  { A ,  B }  =  ( { A }  u.  { B } )
54a1i 9 . . 3  |-  ( ph  ->  { A ,  B }  =  ( { A }  u.  { B } ) )
6 sumpr.4 . . . . 5  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
76simpld 111 . . . 4  |-  ( ph  ->  A  e.  V )
86simprd 113 . . . 4  |-  ( ph  ->  B  e.  W )
9 prfidisj 6872 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  Fin )
107, 8, 1, 9syl3anc 1220 . . 3  |-  ( ph  ->  { A ,  B }  e.  Fin )
11 sumpr.3 . . . . 5  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC ) )
12 sumpr.1 . . . . . . . 8  |-  ( k  =  A  ->  C  =  D )
1312eleq1d 2226 . . . . . . 7  |-  ( k  =  A  ->  ( C  e.  CC  <->  D  e.  CC ) )
14 sumpr.2 . . . . . . . 8  |-  ( k  =  B  ->  C  =  E )
1514eleq1d 2226 . . . . . . 7  |-  ( k  =  B  ->  ( C  e.  CC  <->  E  e.  CC ) )
1613, 15ralprg 3611 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. k  e. 
{ A ,  B } C  e.  CC  <->  ( D  e.  CC  /\  E  e.  CC )
) )
176, 16syl 14 . . . . 5  |-  ( ph  ->  ( A. k  e. 
{ A ,  B } C  e.  CC  <->  ( D  e.  CC  /\  E  e.  CC )
) )
1811, 17mpbird 166 . . . 4  |-  ( ph  ->  A. k  e.  { A ,  B } C  e.  CC )
1918r19.21bi 2545 . . 3  |-  ( (
ph  /\  k  e.  { A ,  B }
)  ->  C  e.  CC )
203, 5, 10, 19fsumsplit 11308 . 2  |-  ( ph  -> 
sum_ k  e.  { A ,  B } C  =  ( sum_ k  e.  { A } C  +  sum_ k  e.  { B } C
) )
2111simpld 111 . . . 4  |-  ( ph  ->  D  e.  CC )
2212sumsn 11312 . . . 4  |-  ( ( A  e.  V  /\  D  e.  CC )  -> 
sum_ k  e.  { A } C  =  D )
237, 21, 22syl2anc 409 . . 3  |-  ( ph  -> 
sum_ k  e.  { A } C  =  D )
2411simprd 113 . . . 4  |-  ( ph  ->  E  e.  CC )
2514sumsn 11312 . . . 4  |-  ( ( B  e.  W  /\  E  e.  CC )  -> 
sum_ k  e.  { B } C  =  E )
268, 24, 25syl2anc 409 . . 3  |-  ( ph  -> 
sum_ k  e.  { B } C  =  E )
2723, 26oveq12d 5843 . 2  |-  ( ph  ->  ( sum_ k  e.  { A } C  +  sum_ k  e.  { B } C )  =  ( D  +  E ) )
2820, 27eqtrd 2190 1  |-  ( ph  -> 
sum_ k  e.  { A ,  B } C  =  ( D  +  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435    u. cun 3100    i^i cin 3101   (/)c0 3394   {csn 3560   {cpr 3561  (class class class)co 5825   Fincfn 6686   CCcc 7731    + caddc 7736   sum_csu 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851  ax-arch 7852  ax-caucvg 7853
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-isom 5180  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-frec 6339  df-1o 6364  df-oadd 6368  df-er 6481  df-en 6687  df-dom 6688  df-fin 6689  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-n0 9092  df-z 9169  df-uz 9441  df-q 9530  df-rp 9562  df-fz 9914  df-fzo 10046  df-seqfrec 10349  df-exp 10423  df-ihash 10654  df-cj 10746  df-re 10747  df-im 10748  df-rsqrt 10902  df-abs 10903  df-clim 11180  df-sumdc 11255
This theorem is referenced by:  sumtp  11315
  Copyright terms: Public domain W3C validator