ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivvva Unicode version

Theorem ralrimivvva 2549
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ralrimivvva.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) )  ->  ps )
Assertion
Ref Expression
ralrimivvva  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  A. z  e.  C  ps )
Distinct variable groups:    ph, x, y, z    y, A, z   
z, B
Allowed substitution hints:    ps( x, y, z)    A( x)    B( x, y)    C( x, y, z)

Proof of Theorem ralrimivvva
StepHypRef Expression
1 ralrimivvva.1 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) )  ->  ps )
213anassrs 1219 . . . 4  |-  ( ( ( ( ph  /\  x  e.  A )  /\  y  e.  B
)  /\  z  e.  C )  ->  ps )
32ralrimiva 2539 . . 3  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  B )  ->  A. z  e.  C  ps )
43ralrimiva 2539 . 2  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  B  A. z  e.  C  ps )
54ralrimiva 2539 1  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  A. z  e.  C  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-ral 2449
This theorem is referenced by:  ispod  4282  swopolem  4283  ordwe  4553  wessep  4555  isopolem  5790  caovassg  6000  caovcang  6003  caovordig  6007  caovordg  6009  caovdig  6016  caovdirg  6019  caoftrn  6075
  Copyright terms: Public domain W3C validator