ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivvva Unicode version

Theorem ralrimivvva 2591
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ralrimivvva.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) )  ->  ps )
Assertion
Ref Expression
ralrimivvva  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  A. z  e.  C  ps )
Distinct variable groups:    ph, x, y, z    y, A, z   
z, B
Allowed substitution hints:    ps( x, y, z)    A( x)    B( x, y)    C( x, y, z)

Proof of Theorem ralrimivvva
StepHypRef Expression
1 ralrimivvva.1 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) )  ->  ps )
213anassrs 1232 . . . 4  |-  ( ( ( ( ph  /\  x  e.  A )  /\  y  e.  B
)  /\  z  e.  C )  ->  ps )
32ralrimiva 2581 . . 3  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  B )  ->  A. z  e.  C  ps )
43ralrimiva 2581 . 2  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  B  A. z  e.  C  ps )
54ralrimiva 2581 1  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  A. z  e.  C  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2178   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1485  df-ral 2491
This theorem is referenced by:  ispod  4369  swopolem  4370  ordwe  4642  wessep  4644  isopolem  5914  caovassg  6128  caovcang  6131  caovordig  6135  caovordg  6137  caovdig  6144  caovdirg  6147  caoftrn  6214  netap  7401  2omotaplemap  7404  isrngd  13830  isringd  13918  aprap  14163  islmodd  14170  rnglidlmsgrp  14374  rnglidlrng  14375
  Copyright terms: Public domain W3C validator