ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovassg Unicode version

Theorem caovassg 6107
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovassg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caovassg  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caovassg
StepHypRef Expression
1 caovassg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
21ralrimivvva 2589 . 2  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )
3 oveq1 5953 . . . . 5  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
43oveq1d 5961 . . . 4  |-  ( x  =  A  ->  (
( x F y ) F z )  =  ( ( A F y ) F z ) )
5 oveq1 5953 . . . 4  |-  ( x  =  A  ->  (
x F ( y F z ) )  =  ( A F ( y F z ) ) )
64, 5eqeq12d 2220 . . 3  |-  ( x  =  A  ->  (
( ( x F y ) F z )  =  ( x F ( y F z ) )  <->  ( ( A F y ) F z )  =  ( A F ( y F z ) ) ) )
7 oveq2 5954 . . . . 5  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
87oveq1d 5961 . . . 4  |-  ( y  =  B  ->  (
( A F y ) F z )  =  ( ( A F B ) F z ) )
9 oveq1 5953 . . . . 5  |-  ( y  =  B  ->  (
y F z )  =  ( B F z ) )
109oveq2d 5962 . . . 4  |-  ( y  =  B  ->  ( A F ( y F z ) )  =  ( A F ( B F z ) ) )
118, 10eqeq12d 2220 . . 3  |-  ( y  =  B  ->  (
( ( A F y ) F z )  =  ( A F ( y F z ) )  <->  ( ( A F B ) F z )  =  ( A F ( B F z ) ) ) )
12 oveq2 5954 . . . 4  |-  ( z  =  C  ->  (
( A F B ) F z )  =  ( ( A F B ) F C ) )
13 oveq2 5954 . . . . 5  |-  ( z  =  C  ->  ( B F z )  =  ( B F C ) )
1413oveq2d 5962 . . . 4  |-  ( z  =  C  ->  ( A F ( B F z ) )  =  ( A F ( B F C ) ) )
1512, 14eqeq12d 2220 . . 3  |-  ( z  =  C  ->  (
( ( A F B ) F z )  =  ( A F ( B F z ) )  <->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) ) )
166, 11, 15rspc3v 2893 . 2  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x F y ) F z )  =  ( x F ( y F z ) )  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) ) )
172, 16mpan9 281 1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949
This theorem is referenced by:  caovassd  6108  caovass  6109  seq3split  10635  seqsplitg  10636  seq3caopr  10642  seqcaoprg  10643  seqf1oglem2  10667  grpinvalem  13250  grpinva  13251  grprida  13252
  Copyright terms: Public domain W3C validator