| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caovassg | Unicode version | ||
| Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro, 26-May-2014.) | 
| Ref | Expression | 
|---|---|
| caovassg.1 | 
 | 
| Ref | Expression | 
|---|---|
| caovassg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovassg.1 | 
. . 3
 | |
| 2 | 1 | ralrimivvva 2580 | 
. 2
 | 
| 3 | oveq1 5929 | 
. . . . 5
 | |
| 4 | 3 | oveq1d 5937 | 
. . . 4
 | 
| 5 | oveq1 5929 | 
. . . 4
 | |
| 6 | 4, 5 | eqeq12d 2211 | 
. . 3
 | 
| 7 | oveq2 5930 | 
. . . . 5
 | |
| 8 | 7 | oveq1d 5937 | 
. . . 4
 | 
| 9 | oveq1 5929 | 
. . . . 5
 | |
| 10 | 9 | oveq2d 5938 | 
. . . 4
 | 
| 11 | 8, 10 | eqeq12d 2211 | 
. . 3
 | 
| 12 | oveq2 5930 | 
. . . 4
 | |
| 13 | oveq2 5930 | 
. . . . 5
 | |
| 14 | 13 | oveq2d 5938 | 
. . . 4
 | 
| 15 | 12, 14 | eqeq12d 2211 | 
. . 3
 | 
| 16 | 6, 11, 15 | rspc3v 2884 | 
. 2
 | 
| 17 | 2, 16 | mpan9 281 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: caovassd 6083 caovass 6084 seq3split 10580 seqsplitg 10581 seq3caopr 10587 seqcaoprg 10588 seqf1oglem2 10612 grpinvalem 13028 grpinva 13029 grprida 13030 | 
| Copyright terms: Public domain | W3C validator |