ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovassg Unicode version

Theorem caovassg 6128
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovassg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caovassg  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caovassg
StepHypRef Expression
1 caovassg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
21ralrimivvva 2591 . 2  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )
3 oveq1 5974 . . . . 5  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
43oveq1d 5982 . . . 4  |-  ( x  =  A  ->  (
( x F y ) F z )  =  ( ( A F y ) F z ) )
5 oveq1 5974 . . . 4  |-  ( x  =  A  ->  (
x F ( y F z ) )  =  ( A F ( y F z ) ) )
64, 5eqeq12d 2222 . . 3  |-  ( x  =  A  ->  (
( ( x F y ) F z )  =  ( x F ( y F z ) )  <->  ( ( A F y ) F z )  =  ( A F ( y F z ) ) ) )
7 oveq2 5975 . . . . 5  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
87oveq1d 5982 . . . 4  |-  ( y  =  B  ->  (
( A F y ) F z )  =  ( ( A F B ) F z ) )
9 oveq1 5974 . . . . 5  |-  ( y  =  B  ->  (
y F z )  =  ( B F z ) )
109oveq2d 5983 . . . 4  |-  ( y  =  B  ->  ( A F ( y F z ) )  =  ( A F ( B F z ) ) )
118, 10eqeq12d 2222 . . 3  |-  ( y  =  B  ->  (
( ( A F y ) F z )  =  ( A F ( y F z ) )  <->  ( ( A F B ) F z )  =  ( A F ( B F z ) ) ) )
12 oveq2 5975 . . . 4  |-  ( z  =  C  ->  (
( A F B ) F z )  =  ( ( A F B ) F C ) )
13 oveq2 5975 . . . . 5  |-  ( z  =  C  ->  ( B F z )  =  ( B F C ) )
1413oveq2d 5983 . . . 4  |-  ( z  =  C  ->  ( A F ( B F z ) )  =  ( A F ( B F C ) ) )
1512, 14eqeq12d 2222 . . 3  |-  ( z  =  C  ->  (
( ( A F B ) F z )  =  ( A F ( B F z ) )  <->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) ) )
166, 11, 15rspc3v 2900 . 2  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x F y ) F z )  =  ( x F ( y F z ) )  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) ) )
172, 16mpan9 281 1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  caovassd  6129  caovass  6130  seq3split  10670  seqsplitg  10671  seq3caopr  10677  seqcaoprg  10678  seqf1oglem2  10702  grpinvalem  13332  grpinva  13333  grprida  13334
  Copyright terms: Public domain W3C validator