| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caoftrn | Unicode version | ||
| Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 |
|
| caofref.2 |
|
| caofcom.3 |
|
| caofass.4 |
|
| caoftrn.5 |
|
| Ref | Expression |
|---|---|
| caoftrn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caoftrn.5 |
. . . . . 6
| |
| 2 | 1 | ralrimivvva 2589 |
. . . . 5
|
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | caofref.2 |
. . . . . 6
| |
| 5 | 4 | ffvelcdmda 5715 |
. . . . 5
|
| 6 | caofcom.3 |
. . . . . 6
| |
| 7 | 6 | ffvelcdmda 5715 |
. . . . 5
|
| 8 | caofass.4 |
. . . . . 6
| |
| 9 | 8 | ffvelcdmda 5715 |
. . . . 5
|
| 10 | breq1 4047 |
. . . . . . . 8
| |
| 11 | 10 | anbi1d 465 |
. . . . . . 7
|
| 12 | breq1 4047 |
. . . . . . 7
| |
| 13 | 11, 12 | imbi12d 234 |
. . . . . 6
|
| 14 | breq2 4048 |
. . . . . . . 8
| |
| 15 | breq1 4047 |
. . . . . . . 8
| |
| 16 | 14, 15 | anbi12d 473 |
. . . . . . 7
|
| 17 | 16 | imbi1d 231 |
. . . . . 6
|
| 18 | breq2 4048 |
. . . . . . . 8
| |
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | breq2 4048 |
. . . . . . 7
| |
| 21 | 19, 20 | imbi12d 234 |
. . . . . 6
|
| 22 | 13, 17, 21 | rspc3v 2893 |
. . . . 5
|
| 23 | 5, 7, 9, 22 | syl3anc 1250 |
. . . 4
|
| 24 | 3, 23 | mpd 13 |
. . 3
|
| 25 | 24 | ralimdva 2573 |
. 2
|
| 26 | ffn 5425 |
. . . . . 6
| |
| 27 | 4, 26 | syl 14 |
. . . . 5
|
| 28 | ffn 5425 |
. . . . . 6
| |
| 29 | 6, 28 | syl 14 |
. . . . 5
|
| 30 | caofref.1 |
. . . . 5
| |
| 31 | inidm 3382 |
. . . . 5
| |
| 32 | eqidd 2206 |
. . . . 5
| |
| 33 | eqidd 2206 |
. . . . 5
| |
| 34 | 27, 29, 30, 30, 31, 32, 33 | ofrfval 6167 |
. . . 4
|
| 35 | ffn 5425 |
. . . . . 6
| |
| 36 | 8, 35 | syl 14 |
. . . . 5
|
| 37 | eqidd 2206 |
. . . . 5
| |
| 38 | 29, 36, 30, 30, 31, 33, 37 | ofrfval 6167 |
. . . 4
|
| 39 | 34, 38 | anbi12d 473 |
. . 3
|
| 40 | r19.26 2632 |
. . 3
| |
| 41 | 39, 40 | bitr4di 198 |
. 2
|
| 42 | 27, 36, 30, 30, 31, 32, 37 | ofrfval 6167 |
. 2
|
| 43 | 25, 41, 42 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ofr 6159 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |