ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caoftrn Unicode version

Theorem caoftrn 6007
Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofcom.3  |-  ( ph  ->  G : A --> S )
caofass.4  |-  ( ph  ->  H : A --> S )
caoftrn.5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x R y  /\  y T z )  ->  x U z ) )
Assertion
Ref Expression
caoftrn  |-  ( ph  ->  ( ( F  oR R G  /\  G  oR T H )  ->  F  oR U H ) )
Distinct variable groups:    x, y, z, F    x, G, y, z    x, H, y, z    ph, x, y, z   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, U, y, z
Allowed substitution hints:    A( x, y, z)    V( x, y, z)

Proof of Theorem caoftrn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caoftrn.5 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x R y  /\  y T z )  ->  x U z ) )
21ralrimivvva 2515 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y  /\  y T z )  ->  x U z ) )
32adantr 274 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( (
x R y  /\  y T z )  ->  x U z ) )
4 caofref.2 . . . . . 6  |-  ( ph  ->  F : A --> S )
54ffvelrnda 5555 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
6 caofcom.3 . . . . . 6  |-  ( ph  ->  G : A --> S )
76ffvelrnda 5555 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
8 caofass.4 . . . . . 6  |-  ( ph  ->  H : A --> S )
98ffvelrnda 5555 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( H `  w )  e.  S )
10 breq1 3932 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  (
x R y  <->  ( F `  w ) R y ) )
1110anbi1d 460 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
( x R y  /\  y T z )  <->  ( ( F `
 w ) R y  /\  y T z ) ) )
12 breq1 3932 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
x U z  <->  ( F `  w ) U z ) )
1311, 12imbi12d 233 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
( ( x R y  /\  y T z )  ->  x U z )  <->  ( (
( F `  w
) R y  /\  y T z )  -> 
( F `  w
) U z ) ) )
14 breq2 3933 . . . . . . . 8  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) R y  <->  ( F `  w ) R ( G `  w ) ) )
15 breq1 3932 . . . . . . . 8  |-  ( y  =  ( G `  w )  ->  (
y T z  <->  ( G `  w ) T z ) )
1614, 15anbi12d 464 . . . . . . 7  |-  ( y  =  ( G `  w )  ->  (
( ( F `  w ) R y  /\  y T z )  <->  ( ( F `
 w ) R ( G `  w
)  /\  ( G `  w ) T z ) ) )
1716imbi1d 230 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( ( ( F `
 w ) R y  /\  y T z )  ->  ( F `  w ) U z )  <->  ( (
( F `  w
) R ( G `
 w )  /\  ( G `  w ) T z )  -> 
( F `  w
) U z ) ) )
18 breq2 3933 . . . . . . . 8  |-  ( z  =  ( H `  w )  ->  (
( G `  w
) T z  <->  ( G `  w ) T ( H `  w ) ) )
1918anbi2d 459 . . . . . . 7  |-  ( z  =  ( H `  w )  ->  (
( ( F `  w ) R ( G `  w )  /\  ( G `  w ) T z )  <->  ( ( F `
 w ) R ( G `  w
)  /\  ( G `  w ) T ( H `  w ) ) ) )
20 breq2 3933 . . . . . . 7  |-  ( z  =  ( H `  w )  ->  (
( F `  w
) U z  <->  ( F `  w ) U ( H `  w ) ) )
2119, 20imbi12d 233 . . . . . 6  |-  ( z  =  ( H `  w )  ->  (
( ( ( F `
 w ) R ( G `  w
)  /\  ( G `  w ) T z )  ->  ( F `  w ) U z )  <->  ( ( ( F `  w ) R ( G `  w )  /\  ( G `  w ) T ( H `  w ) )  -> 
( F `  w
) U ( H `
 w ) ) ) )
2213, 17, 21rspc3v 2805 . . . . 5  |-  ( ( ( F `  w
)  e.  S  /\  ( G `  w )  e.  S  /\  ( H `  w )  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y  /\  y T z )  ->  x U z )  -> 
( ( ( F `
 w ) R ( G `  w
)  /\  ( G `  w ) T ( H `  w ) )  ->  ( F `  w ) U ( H `  w ) ) ) )
235, 7, 9, 22syl3anc 1216 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y  /\  y T z )  ->  x U z )  -> 
( ( ( F `
 w ) R ( G `  w
)  /\  ( G `  w ) T ( H `  w ) )  ->  ( F `  w ) U ( H `  w ) ) ) )
243, 23mpd 13 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( ( F `  w ) R ( G `  w )  /\  ( G `  w ) T ( H `  w ) )  ->  ( F `  w ) U ( H `  w ) ) )
2524ralimdva 2499 . 2  |-  ( ph  ->  ( A. w  e.  A  ( ( F `
 w ) R ( G `  w
)  /\  ( G `  w ) T ( H `  w ) )  ->  A. w  e.  A  ( F `  w ) U ( H `  w ) ) )
26 ffn 5272 . . . . . 6  |-  ( F : A --> S  ->  F  Fn  A )
274, 26syl 14 . . . . 5  |-  ( ph  ->  F  Fn  A )
28 ffn 5272 . . . . . 6  |-  ( G : A --> S  ->  G  Fn  A )
296, 28syl 14 . . . . 5  |-  ( ph  ->  G  Fn  A )
30 caofref.1 . . . . 5  |-  ( ph  ->  A  e.  V )
31 inidm 3285 . . . . 5  |-  ( A  i^i  A )  =  A
32 eqidd 2140 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
33 eqidd 2140 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( G `  w ) )
3427, 29, 30, 30, 31, 32, 33ofrfval 5990 . . . 4  |-  ( ph  ->  ( F  oR R G  <->  A. w  e.  A  ( F `  w ) R ( G `  w ) ) )
35 ffn 5272 . . . . . 6  |-  ( H : A --> S  ->  H  Fn  A )
368, 35syl 14 . . . . 5  |-  ( ph  ->  H  Fn  A )
37 eqidd 2140 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( H `  w )  =  ( H `  w ) )
3829, 36, 30, 30, 31, 33, 37ofrfval 5990 . . . 4  |-  ( ph  ->  ( G  oR T H  <->  A. w  e.  A  ( G `  w ) T ( H `  w ) ) )
3934, 38anbi12d 464 . . 3  |-  ( ph  ->  ( ( F  oR R G  /\  G  oR T H )  <->  ( A. w  e.  A  ( F `  w ) R ( G `  w )  /\  A. w  e.  A  ( G `  w ) T ( H `  w ) ) ) )
40 r19.26 2558 . . 3  |-  ( A. w  e.  A  (
( F `  w
) R ( G `
 w )  /\  ( G `  w ) T ( H `  w ) )  <->  ( A. w  e.  A  ( F `  w ) R ( G `  w )  /\  A. w  e.  A  ( G `  w ) T ( H `  w ) ) )
4139, 40syl6bbr 197 . 2  |-  ( ph  ->  ( ( F  oR R G  /\  G  oR T H )  <->  A. w  e.  A  ( ( F `  w ) R ( G `  w )  /\  ( G `  w ) T ( H `  w ) ) ) )
4227, 36, 30, 30, 31, 32, 37ofrfval 5990 . 2  |-  ( ph  ->  ( F  oR U H  <->  A. w  e.  A  ( F `  w ) U ( H `  w ) ) )
4325, 41, 423imtr4d 202 1  |-  ( ph  ->  ( ( F  oR R G  /\  G  oR T H )  ->  F  oR U H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   class class class wbr 3929    Fn wfn 5118   -->wf 5119   ` cfv 5123    oRcofr 5981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ofr 5983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator