Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caoftrn | Unicode version |
Description: Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | |
caofref.2 | |
caofcom.3 | |
caofass.4 | |
caoftrn.5 |
Ref | Expression |
---|---|
caoftrn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caoftrn.5 | . . . . . 6 | |
2 | 1 | ralrimivvva 2553 | . . . . 5 |
3 | 2 | adantr 274 | . . . 4 |
4 | caofref.2 | . . . . . 6 | |
5 | 4 | ffvelrnda 5631 | . . . . 5 |
6 | caofcom.3 | . . . . . 6 | |
7 | 6 | ffvelrnda 5631 | . . . . 5 |
8 | caofass.4 | . . . . . 6 | |
9 | 8 | ffvelrnda 5631 | . . . . 5 |
10 | breq1 3992 | . . . . . . . 8 | |
11 | 10 | anbi1d 462 | . . . . . . 7 |
12 | breq1 3992 | . . . . . . 7 | |
13 | 11, 12 | imbi12d 233 | . . . . . 6 |
14 | breq2 3993 | . . . . . . . 8 | |
15 | breq1 3992 | . . . . . . . 8 | |
16 | 14, 15 | anbi12d 470 | . . . . . . 7 |
17 | 16 | imbi1d 230 | . . . . . 6 |
18 | breq2 3993 | . . . . . . . 8 | |
19 | 18 | anbi2d 461 | . . . . . . 7 |
20 | breq2 3993 | . . . . . . 7 | |
21 | 19, 20 | imbi12d 233 | . . . . . 6 |
22 | 13, 17, 21 | rspc3v 2850 | . . . . 5 |
23 | 5, 7, 9, 22 | syl3anc 1233 | . . . 4 |
24 | 3, 23 | mpd 13 | . . 3 |
25 | 24 | ralimdva 2537 | . 2 |
26 | ffn 5347 | . . . . . 6 | |
27 | 4, 26 | syl 14 | . . . . 5 |
28 | ffn 5347 | . . . . . 6 | |
29 | 6, 28 | syl 14 | . . . . 5 |
30 | caofref.1 | . . . . 5 | |
31 | inidm 3336 | . . . . 5 | |
32 | eqidd 2171 | . . . . 5 | |
33 | eqidd 2171 | . . . . 5 | |
34 | 27, 29, 30, 30, 31, 32, 33 | ofrfval 6069 | . . . 4 |
35 | ffn 5347 | . . . . . 6 | |
36 | 8, 35 | syl 14 | . . . . 5 |
37 | eqidd 2171 | . . . . 5 | |
38 | 29, 36, 30, 30, 31, 33, 37 | ofrfval 6069 | . . . 4 |
39 | 34, 38 | anbi12d 470 | . . 3 |
40 | r19.26 2596 | . . 3 | |
41 | 39, 40 | bitr4di 197 | . 2 |
42 | 27, 36, 30, 30, 31, 32, 37 | ofrfval 6069 | . 2 |
43 | 25, 41, 42 | 3imtr4d 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 wfn 5193 wf 5194 cfv 5198 cofr 6060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ofr 6062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |