ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrngd Unicode version

Theorem isrngd 13509
Description: Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.)
Hypotheses
Ref Expression
isrngd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isrngd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isrngd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isrngd.g  |-  ( ph  ->  R  e.  Abel )
isrngd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
isrngd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
isrngd.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
isrngd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
Assertion
Ref Expression
isrngd  |-  ( ph  ->  R  e. Rng )
Distinct variable groups:    x, y, z, B    ph, x, y, z   
x, R, y, z
Allowed substitution hints:    .+ ( x, y,
z)    .x. ( x, y, z)

Proof of Theorem isrngd
StepHypRef Expression
1 isrngd.g . 2  |-  ( ph  ->  R  e.  Abel )
2 isrngd.b . . . 4  |-  ( ph  ->  B  =  ( Base `  R ) )
3 eqid 2196 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
4 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
53, 4mgpbasg 13482 . . . . 5  |-  ( R  e.  Abel  ->  ( Base `  R )  =  (
Base `  (mulGrp `  R
) ) )
61, 5syl 14 . . . 4  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
72, 6eqtrd 2229 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  R )
) )
8 isrngd.t . . . 4  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
9 eqid 2196 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
103, 9mgpplusgg 13480 . . . . 5  |-  ( R  e.  Abel  ->  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) ) )
111, 10syl 14 . . . 4  |-  ( ph  ->  ( .r `  R
)  =  ( +g  `  (mulGrp `  R )
) )
128, 11eqtrd 2229 . . 3  |-  ( ph  ->  .x.  =  ( +g  `  (mulGrp `  R )
) )
13 isrngd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
14 isrngd.a . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
153mgpex 13481 . . . 4  |-  ( R  e.  Abel  ->  (mulGrp `  R )  e.  _V )
161, 15syl 14 . . 3  |-  ( ph  ->  (mulGrp `  R )  e.  _V )
177, 12, 13, 14, 16issgrpd 13055 . 2  |-  ( ph  ->  (mulGrp `  R )  e. Smgrp )
182eleq2d 2266 . . . . . 6  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  R
) ) )
192eleq2d 2266 . . . . . 6  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  R
) ) )
202eleq2d 2266 . . . . . 6  |-  ( ph  ->  ( z  e.  B  <->  z  e.  ( Base `  R
) ) )
2118, 19, 203anbi123d 1323 . . . . 5  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) ) ) )
2221biimpar 297 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )
23 isrngd.d . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
248adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  .x.  =  ( .r `  R ) )
25 eqidd 2197 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  x  =  x )
26 isrngd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  R ) )
2726oveqdr 5950 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( y  .+  z
)  =  ( y ( +g  `  R
) z ) )
2824, 25, 27oveq123d 5943 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( x ( .r `  R
) ( y ( +g  `  R ) z ) ) )
2926adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  .+  =  ( +g  `  R ) )
308oveqdr 5950 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  y
)  =  ( x ( .r `  R
) y ) )
318oveqdr 5950 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  z
)  =  ( x ( .r `  R
) z ) )
3229, 30, 31oveq123d 5943 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .+  (
x  .x.  z )
)  =  ( ( x ( .r `  R ) y ) ( +g  `  R
) ( x ( .r `  R ) z ) ) )
3323, 28, 323eqtr3d 2237 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x ( .r
`  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) ) )
34 isrngd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
3526oveqdr 5950 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .+  y
)  =  ( x ( +g  `  R
) y ) )
36 eqidd 2197 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
z  =  z )
3724, 35, 36oveq123d 5943 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x ( +g  `  R
) y ) ( .r `  R ) z ) )
388oveqdr 5950 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( y  .x.  z
)  =  ( y ( .r `  R
) z ) )
3929, 31, 38oveq123d 5943 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  z )  .+  (
y  .x.  z )
)  =  ( ( x ( .r `  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )
4034, 37, 393eqtr3d 2237 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )
4133, 40jca 306 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x ( .r `  R ) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R
) ( x ( .r `  R ) z ) )  /\  ( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )
4222, 41syldan 282 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( (
x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) )
4342ralrimivvva 2580 . 2  |-  ( ph  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) )
44 eqid 2196 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
454, 3, 44, 9isrng 13490 . 2  |-  ( R  e. Rng 
<->  ( R  e.  Abel  /\  (mulGrp `  R )  e. Smgrp  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
461, 17, 43, 45syl3anbrc 1183 1  |-  ( ph  ->  R  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756  Smgrpcsgrp 13044   Abelcabl 13415  mulGrpcmgp 13476  Rngcrng 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-mgm 12999  df-sgrp 13045  df-mgp 13477  df-rng 13489
This theorem is referenced by:  rngressid  13510  imasrng  13512  opprrng  13633  issubrng2  13766
  Copyright terms: Public domain W3C validator