| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isrngd | Unicode version | ||
| Description: Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| isrngd.b |
|
| isrngd.p |
|
| isrngd.t |
|
| isrngd.g |
|
| isrngd.c |
|
| isrngd.a |
|
| isrngd.d |
|
| isrngd.e |
|
| Ref | Expression |
|---|---|
| isrngd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrngd.g |
. 2
| |
| 2 | isrngd.b |
. . . 4
| |
| 3 | eqid 2196 |
. . . . . 6
| |
| 4 | eqid 2196 |
. . . . . 6
| |
| 5 | 3, 4 | mgpbasg 13492 |
. . . . 5
|
| 6 | 1, 5 | syl 14 |
. . . 4
|
| 7 | 2, 6 | eqtrd 2229 |
. . 3
|
| 8 | isrngd.t |
. . . 4
| |
| 9 | eqid 2196 |
. . . . . 6
| |
| 10 | 3, 9 | mgpplusgg 13490 |
. . . . 5
|
| 11 | 1, 10 | syl 14 |
. . . 4
|
| 12 | 8, 11 | eqtrd 2229 |
. . 3
|
| 13 | isrngd.c |
. . 3
| |
| 14 | isrngd.a |
. . 3
| |
| 15 | 3 | mgpex 13491 |
. . . 4
|
| 16 | 1, 15 | syl 14 |
. . 3
|
| 17 | 7, 12, 13, 14, 16 | issgrpd 13065 |
. 2
|
| 18 | 2 | eleq2d 2266 |
. . . . . 6
|
| 19 | 2 | eleq2d 2266 |
. . . . . 6
|
| 20 | 2 | eleq2d 2266 |
. . . . . 6
|
| 21 | 18, 19, 20 | 3anbi123d 1323 |
. . . . 5
|
| 22 | 21 | biimpar 297 |
. . . 4
|
| 23 | isrngd.d |
. . . . . 6
| |
| 24 | 8 | adantr 276 |
. . . . . . 7
|
| 25 | eqidd 2197 |
. . . . . . 7
| |
| 26 | isrngd.p |
. . . . . . . 8
| |
| 27 | 26 | oveqdr 5951 |
. . . . . . 7
|
| 28 | 24, 25, 27 | oveq123d 5944 |
. . . . . 6
|
| 29 | 26 | adantr 276 |
. . . . . . 7
|
| 30 | 8 | oveqdr 5951 |
. . . . . . 7
|
| 31 | 8 | oveqdr 5951 |
. . . . . . 7
|
| 32 | 29, 30, 31 | oveq123d 5944 |
. . . . . 6
|
| 33 | 23, 28, 32 | 3eqtr3d 2237 |
. . . . 5
|
| 34 | isrngd.e |
. . . . . 6
| |
| 35 | 26 | oveqdr 5951 |
. . . . . . 7
|
| 36 | eqidd 2197 |
. . . . . . 7
| |
| 37 | 24, 35, 36 | oveq123d 5944 |
. . . . . 6
|
| 38 | 8 | oveqdr 5951 |
. . . . . . 7
|
| 39 | 29, 31, 38 | oveq123d 5944 |
. . . . . 6
|
| 40 | 34, 37, 39 | 3eqtr3d 2237 |
. . . . 5
|
| 41 | 33, 40 | jca 306 |
. . . 4
|
| 42 | 22, 41 | syldan 282 |
. . 3
|
| 43 | 42 | ralrimivvva 2580 |
. 2
|
| 44 | eqid 2196 |
. . 3
| |
| 45 | 4, 3, 44, 9 | isrng 13500 |
. 2
|
| 46 | 1, 17, 43, 45 | syl3anbrc 1183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-inn 8993 df-2 9051 df-3 9052 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-plusg 12778 df-mulr 12779 df-mgm 13009 df-sgrp 13055 df-mgp 13487 df-rng 13499 |
| This theorem is referenced by: rngressid 13520 imasrng 13522 opprrng 13643 issubrng2 13776 |
| Copyright terms: Public domain | W3C validator |