Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isringd | Unicode version |
Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013.) |
Ref | Expression |
---|---|
isringd.b | |
isringd.p | |
isringd.t | |
isringd.g | |
isringd.c | |
isringd.a | |
isringd.d | |
isringd.e | |
isringd.u | |
isringd.i | |
isringd.h |
Ref | Expression |
---|---|
isringd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isringd.g | . 2 | |
2 | isringd.b | . . . 4 | |
3 | eqid 2175 | . . . . . 6 mulGrp mulGrp | |
4 | eqid 2175 | . . . . . 6 | |
5 | 3, 4 | mgpbasg 12930 | . . . . 5 mulGrp |
6 | 1, 5 | syl 14 | . . . 4 mulGrp |
7 | 2, 6 | eqtrd 2208 | . . 3 mulGrp |
8 | isringd.t | . . . 4 | |
9 | eqid 2175 | . . . . . 6 | |
10 | 3, 9 | mgpplusgg 12929 | . . . . 5 mulGrp |
11 | 1, 10 | syl 14 | . . . 4 mulGrp |
12 | 8, 11 | eqtrd 2208 | . . 3 mulGrp |
13 | isringd.c | . . 3 | |
14 | isringd.a | . . 3 | |
15 | isringd.u | . . 3 | |
16 | isringd.i | . . 3 | |
17 | isringd.h | . . 3 | |
18 | 7, 12, 13, 14, 15, 16, 17 | ismndd 12703 | . 2 mulGrp |
19 | 2 | eleq2d 2245 | . . . . . 6 |
20 | 2 | eleq2d 2245 | . . . . . 6 |
21 | 2 | eleq2d 2245 | . . . . . 6 |
22 | 19, 20, 21 | 3anbi123d 1312 | . . . . 5 |
23 | 22 | biimpar 297 | . . . 4 |
24 | isringd.d | . . . . . 6 | |
25 | 8 | adantr 276 | . . . . . . 7 |
26 | eqidd 2176 | . . . . . . 7 | |
27 | isringd.p | . . . . . . . 8 | |
28 | 27 | oveqdr 5893 | . . . . . . 7 |
29 | 25, 26, 28 | oveq123d 5886 | . . . . . 6 |
30 | 27 | adantr 276 | . . . . . . 7 |
31 | 8 | oveqdr 5893 | . . . . . . 7 |
32 | 8 | oveqdr 5893 | . . . . . . 7 |
33 | 30, 31, 32 | oveq123d 5886 | . . . . . 6 |
34 | 24, 29, 33 | 3eqtr3d 2216 | . . . . 5 |
35 | isringd.e | . . . . . 6 | |
36 | 27 | oveqdr 5893 | . . . . . . 7 |
37 | eqidd 2176 | . . . . . . 7 | |
38 | 25, 36, 37 | oveq123d 5886 | . . . . . 6 |
39 | 8 | oveqdr 5893 | . . . . . . 7 |
40 | 30, 32, 39 | oveq123d 5886 | . . . . . 6 |
41 | 35, 38, 40 | 3eqtr3d 2216 | . . . . 5 |
42 | 34, 41 | jca 306 | . . . 4 |
43 | 23, 42 | syldan 282 | . . 3 |
44 | 43 | ralrimivvva 2558 | . 2 |
45 | eqid 2175 | . . 3 | |
46 | 4, 3, 45, 9 | isring 12976 | . 2 mulGrp |
47 | 1, 18, 44, 46 | syl3anbrc 1181 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 cfv 5208 (class class class)co 5865 cbs 12428 cplusg 12492 cmulr 12493 cmnd 12682 cgrp 12738 mulGrpcmgp 12925 crg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-mgp 12926 df-ring 12974 |
This theorem is referenced by: iscrngd 13013 |
Copyright terms: Public domain | W3C validator |