| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isringd | Unicode version | ||
| Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013.) |
| Ref | Expression |
|---|---|
| isringd.b |
|
| isringd.p |
|
| isringd.t |
|
| isringd.g |
|
| isringd.c |
|
| isringd.a |
|
| isringd.d |
|
| isringd.e |
|
| isringd.u |
|
| isringd.i |
|
| isringd.h |
|
| Ref | Expression |
|---|---|
| isringd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringd.g |
. 2
| |
| 2 | isringd.b |
. . . 4
| |
| 3 | eqid 2196 |
. . . . . 6
| |
| 4 | eqid 2196 |
. . . . . 6
| |
| 5 | 3, 4 | mgpbasg 13482 |
. . . . 5
|
| 6 | 1, 5 | syl 14 |
. . . 4
|
| 7 | 2, 6 | eqtrd 2229 |
. . 3
|
| 8 | isringd.t |
. . . 4
| |
| 9 | eqid 2196 |
. . . . . 6
| |
| 10 | 3, 9 | mgpplusgg 13480 |
. . . . 5
|
| 11 | 1, 10 | syl 14 |
. . . 4
|
| 12 | 8, 11 | eqtrd 2229 |
. . 3
|
| 13 | isringd.c |
. . 3
| |
| 14 | isringd.a |
. . 3
| |
| 15 | isringd.u |
. . 3
| |
| 16 | isringd.i |
. . 3
| |
| 17 | isringd.h |
. . 3
| |
| 18 | 7, 12, 13, 14, 15, 16, 17 | ismndd 13078 |
. 2
|
| 19 | 2 | eleq2d 2266 |
. . . . . 6
|
| 20 | 2 | eleq2d 2266 |
. . . . . 6
|
| 21 | 2 | eleq2d 2266 |
. . . . . 6
|
| 22 | 19, 20, 21 | 3anbi123d 1323 |
. . . . 5
|
| 23 | 22 | biimpar 297 |
. . . 4
|
| 24 | isringd.d |
. . . . . 6
| |
| 25 | 8 | adantr 276 |
. . . . . . 7
|
| 26 | eqidd 2197 |
. . . . . . 7
| |
| 27 | isringd.p |
. . . . . . . 8
| |
| 28 | 27 | oveqdr 5950 |
. . . . . . 7
|
| 29 | 25, 26, 28 | oveq123d 5943 |
. . . . . 6
|
| 30 | 27 | adantr 276 |
. . . . . . 7
|
| 31 | 8 | oveqdr 5950 |
. . . . . . 7
|
| 32 | 8 | oveqdr 5950 |
. . . . . . 7
|
| 33 | 30, 31, 32 | oveq123d 5943 |
. . . . . 6
|
| 34 | 24, 29, 33 | 3eqtr3d 2237 |
. . . . 5
|
| 35 | isringd.e |
. . . . . 6
| |
| 36 | 27 | oveqdr 5950 |
. . . . . . 7
|
| 37 | eqidd 2197 |
. . . . . . 7
| |
| 38 | 25, 36, 37 | oveq123d 5943 |
. . . . . 6
|
| 39 | 8 | oveqdr 5950 |
. . . . . . 7
|
| 40 | 30, 32, 39 | oveq123d 5943 |
. . . . . 6
|
| 41 | 35, 38, 40 | 3eqtr3d 2237 |
. . . . 5
|
| 42 | 34, 41 | jca 306 |
. . . 4
|
| 43 | 23, 42 | syldan 282 |
. . 3
|
| 44 | 43 | ralrimivvva 2580 |
. 2
|
| 45 | eqid 2196 |
. . 3
| |
| 46 | 4, 3, 45, 9 | isring 13556 |
. 2
|
| 47 | 1, 18, 44, 46 | syl3anbrc 1183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mgp 13477 df-ring 13554 |
| This theorem is referenced by: iscrngd 13598 ringressid 13619 imasring 13620 opprring 13635 issubrg2 13797 |
| Copyright terms: Public domain | W3C validator |