ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isringd Unicode version

Theorem isringd 13745
Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isringd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isringd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isringd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isringd.g  |-  ( ph  ->  R  e.  Grp )
isringd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
isringd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
isringd.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
isringd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
isringd.u  |-  ( ph  ->  .1.  e.  B )
isringd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
isringd.h  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
Assertion
Ref Expression
isringd  |-  ( ph  ->  R  e.  Ring )
Distinct variable groups:    x,  .1.    x, y, z, B    ph, x, y, z    x, R, y, z
Allowed substitution hints:    .+ ( x, y,
z)    .x. ( x, y, z)    .1. ( y, z)

Proof of Theorem isringd
StepHypRef Expression
1 isringd.g . 2  |-  ( ph  ->  R  e.  Grp )
2 isringd.b . . . 4  |-  ( ph  ->  B  =  ( Base `  R ) )
3 eqid 2204 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
4 eqid 2204 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
53, 4mgpbasg 13630 . . . . 5  |-  ( R  e.  Grp  ->  ( Base `  R )  =  ( Base `  (mulGrp `  R ) ) )
61, 5syl 14 . . . 4  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
72, 6eqtrd 2237 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  R )
) )
8 isringd.t . . . 4  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
9 eqid 2204 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
103, 9mgpplusgg 13628 . . . . 5  |-  ( R  e.  Grp  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
111, 10syl 14 . . . 4  |-  ( ph  ->  ( .r `  R
)  =  ( +g  `  (mulGrp `  R )
) )
128, 11eqtrd 2237 . . 3  |-  ( ph  ->  .x.  =  ( +g  `  (mulGrp `  R )
) )
13 isringd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
14 isringd.a . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
15 isringd.u . . 3  |-  ( ph  ->  .1.  e.  B )
16 isringd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
17 isringd.h . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
187, 12, 13, 14, 15, 16, 17ismndd 13211 . 2  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
192eleq2d 2274 . . . . . 6  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  R
) ) )
202eleq2d 2274 . . . . . 6  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  R
) ) )
212eleq2d 2274 . . . . . 6  |-  ( ph  ->  ( z  e.  B  <->  z  e.  ( Base `  R
) ) )
2219, 20, 213anbi123d 1324 . . . . 5  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) ) ) )
2322biimpar 297 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )
24 isringd.d . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
258adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  .x.  =  ( .r `  R ) )
26 eqidd 2205 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  x  =  x )
27 isringd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  R ) )
2827oveqdr 5971 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( y  .+  z
)  =  ( y ( +g  `  R
) z ) )
2925, 26, 28oveq123d 5964 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( x ( .r `  R
) ( y ( +g  `  R ) z ) ) )
3027adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  .+  =  ( +g  `  R ) )
318oveqdr 5971 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  y
)  =  ( x ( .r `  R
) y ) )
328oveqdr 5971 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  z
)  =  ( x ( .r `  R
) z ) )
3330, 31, 32oveq123d 5964 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .+  (
x  .x.  z )
)  =  ( ( x ( .r `  R ) y ) ( +g  `  R
) ( x ( .r `  R ) z ) ) )
3424, 29, 333eqtr3d 2245 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x ( .r
`  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) ) )
35 isringd.e . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
3627oveqdr 5971 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .+  y
)  =  ( x ( +g  `  R
) y ) )
37 eqidd 2205 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
z  =  z )
3825, 36, 37oveq123d 5964 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x ( +g  `  R
) y ) ( .r `  R ) z ) )
398oveqdr 5971 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( y  .x.  z
)  =  ( y ( .r `  R
) z ) )
4030, 32, 39oveq123d 5964 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  z )  .+  (
y  .x.  z )
)  =  ( ( x ( .r `  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )
4135, 38, 403eqtr3d 2245 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )
4234, 41jca 306 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x ( .r `  R ) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R
) ( x ( .r `  R ) z ) )  /\  ( ( x ( +g  `  R ) y ) ( .r
`  R ) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )
4323, 42syldan 282 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R ) ) )  ->  ( (
x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) )
4443ralrimivvva 2588 . 2  |-  ( ph  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) )
45 eqid 2204 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
464, 3, 45, 9isring 13704 . 2  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
471, 18, 44, 46syl3anbrc 1183 1  |-  ( ph  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   .rcmulr 12852   Mndcmnd 13190   Grpcgrp 13274  mulGrpcmgp 13624   Ringcrg 13700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-mgp 13625  df-ring 13702
This theorem is referenced by:  iscrngd  13746  ringressid  13767  imasring  13768  opprring  13783  issubrg2  13945
  Copyright terms: Public domain W3C validator