| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isringd | Unicode version | ||
| Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013.) |
| Ref | Expression |
|---|---|
| isringd.b |
|
| isringd.p |
|
| isringd.t |
|
| isringd.g |
|
| isringd.c |
|
| isringd.a |
|
| isringd.d |
|
| isringd.e |
|
| isringd.u |
|
| isringd.i |
|
| isringd.h |
|
| Ref | Expression |
|---|---|
| isringd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringd.g |
. 2
| |
| 2 | isringd.b |
. . . 4
| |
| 3 | eqid 2204 |
. . . . . 6
| |
| 4 | eqid 2204 |
. . . . . 6
| |
| 5 | 3, 4 | mgpbasg 13630 |
. . . . 5
|
| 6 | 1, 5 | syl 14 |
. . . 4
|
| 7 | 2, 6 | eqtrd 2237 |
. . 3
|
| 8 | isringd.t |
. . . 4
| |
| 9 | eqid 2204 |
. . . . . 6
| |
| 10 | 3, 9 | mgpplusgg 13628 |
. . . . 5
|
| 11 | 1, 10 | syl 14 |
. . . 4
|
| 12 | 8, 11 | eqtrd 2237 |
. . 3
|
| 13 | isringd.c |
. . 3
| |
| 14 | isringd.a |
. . 3
| |
| 15 | isringd.u |
. . 3
| |
| 16 | isringd.i |
. . 3
| |
| 17 | isringd.h |
. . 3
| |
| 18 | 7, 12, 13, 14, 15, 16, 17 | ismndd 13211 |
. 2
|
| 19 | 2 | eleq2d 2274 |
. . . . . 6
|
| 20 | 2 | eleq2d 2274 |
. . . . . 6
|
| 21 | 2 | eleq2d 2274 |
. . . . . 6
|
| 22 | 19, 20, 21 | 3anbi123d 1324 |
. . . . 5
|
| 23 | 22 | biimpar 297 |
. . . 4
|
| 24 | isringd.d |
. . . . . 6
| |
| 25 | 8 | adantr 276 |
. . . . . . 7
|
| 26 | eqidd 2205 |
. . . . . . 7
| |
| 27 | isringd.p |
. . . . . . . 8
| |
| 28 | 27 | oveqdr 5971 |
. . . . . . 7
|
| 29 | 25, 26, 28 | oveq123d 5964 |
. . . . . 6
|
| 30 | 27 | adantr 276 |
. . . . . . 7
|
| 31 | 8 | oveqdr 5971 |
. . . . . . 7
|
| 32 | 8 | oveqdr 5971 |
. . . . . . 7
|
| 33 | 30, 31, 32 | oveq123d 5964 |
. . . . . 6
|
| 34 | 24, 29, 33 | 3eqtr3d 2245 |
. . . . 5
|
| 35 | isringd.e |
. . . . . 6
| |
| 36 | 27 | oveqdr 5971 |
. . . . . . 7
|
| 37 | eqidd 2205 |
. . . . . . 7
| |
| 38 | 25, 36, 37 | oveq123d 5964 |
. . . . . 6
|
| 39 | 8 | oveqdr 5971 |
. . . . . . 7
|
| 40 | 30, 32, 39 | oveq123d 5964 |
. . . . . 6
|
| 41 | 35, 38, 40 | 3eqtr3d 2245 |
. . . . 5
|
| 42 | 34, 41 | jca 306 |
. . . 4
|
| 43 | 23, 42 | syldan 282 |
. . 3
|
| 44 | 43 | ralrimivvva 2588 |
. 2
|
| 45 | eqid 2204 |
. . 3
| |
| 46 | 4, 3, 45, 9 | isring 13704 |
. 2
|
| 47 | 1, 18, 44, 46 | syl3anbrc 1183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-plusg 12864 df-mulr 12865 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-mgp 13625 df-ring 13702 |
| This theorem is referenced by: iscrngd 13746 ringressid 13767 imasring 13768 opprring 13783 issubrg2 13945 |
| Copyright terms: Public domain | W3C validator |